Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Strain and Temperature Monitoring in Early-Age Concrete by Distributed Optical Fiber Sensing
In the way towards a carbon neutral construction industry, the partial substitution of cement clinker by alternative binders is becoming increasingly popular in the design of low-carbon concrete mixes. However, as new concrete mixes are developed, the parameters governing the risk of early-age cracking arising from restraint forces due to thermal and shrinkage deformations need to be investigated for each mix. This paper reports the results of a field test in which distributed optical fiber sensors (DOFS) were used to monitor strain and temperature in two large-scale prisms cast against the ground. One of the specimens was cast with a reference concrete mix with CEM I whereas in the other mix cement was partly replaced by fly ash. After casting, mineral wool was used to insulate the specimens in order to reproduce realistic conditions in large mass concrete elements. Temperature measurements enabled a direct comparison of the heat generated by each mix as well as the estimation of the strength development. Strain measurements, on the other hand, gave an indication of the variation of the degree of restraint along the height of the specimens. Using available models for concrete creep, the tensile stresses along the specimens were calculated at different heights and compared to the expected tensile strength in order to assess the crack risk. After removing the insulation, measured strains exhibited a strong dependence on external temperature variations. The test results proved useful to analyse the early-age behaviour of concrete.
Strain and Temperature Monitoring in Early-Age Concrete by Distributed Optical Fiber Sensing
In the way towards a carbon neutral construction industry, the partial substitution of cement clinker by alternative binders is becoming increasingly popular in the design of low-carbon concrete mixes. However, as new concrete mixes are developed, the parameters governing the risk of early-age cracking arising from restraint forces due to thermal and shrinkage deformations need to be investigated for each mix. This paper reports the results of a field test in which distributed optical fiber sensors (DOFS) were used to monitor strain and temperature in two large-scale prisms cast against the ground. One of the specimens was cast with a reference concrete mix with CEM I whereas in the other mix cement was partly replaced by fly ash. After casting, mineral wool was used to insulate the specimens in order to reproduce realistic conditions in large mass concrete elements. Temperature measurements enabled a direct comparison of the heat generated by each mix as well as the estimation of the strength development. Strain measurements, on the other hand, gave an indication of the variation of the degree of restraint along the height of the specimens. Using available models for concrete creep, the tensile stresses along the specimens were calculated at different heights and compared to the expected tensile strength in order to assess the crack risk. After removing the insulation, measured strains exhibited a strong dependence on external temperature variations. The test results proved useful to analyse the early-age behaviour of concrete.
Strain and Temperature Monitoring in Early-Age Concrete by Distributed Optical Fiber Sensing
RILEM Bookseries
Jędrzejewska, Agnieszka (Herausgeber:in) / Kanavaris, Fragkoulis (Herausgeber:in) / Azenha, Miguel (Herausgeber:in) / Benboudjema, Farid (Herausgeber:in) / Schlicke, Dirk (Herausgeber:in) / Berrocal, Carlos G. (Autor:in) / Fernandez, Ignasi (Autor:in) / Löfgren, Ingemar (Autor:in) / Nordström, Erik (Autor:in) / Rempling, Rasmus (Autor:in)
International RILEM Conference on Synergising expertise towards sustainability and robustness of CBMs and concrete structures ; 2023 ; Milos Island, Greece
11.06.2023
12 pages
Aufsatz/Kapitel (Buch)
Elektronische Ressource
Englisch
Health Monitoring of Rehabilitated Concrete Bridges Using Distributed Optical Fiber Sensing
Online Contents | 2006
|Distributed optical fiber sensing of cracks in concrete
SPIE | 1998
|Wellbore completion monitoring using fiber optic distributed strain sensing
TIBKAT | 2020
|Wellbore completion monitoring using fiber optic distributed strain sensing
UB Braunschweig | 2020
|