Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Hydrodynamic Loads on the Water Chamber with Cavitating Dampers
The data on the hydrodynamic loads on the water tank in the presence of cavitating non-erosion energy absorbers are presented.
It is shown that these loads increase in comparison with the cavitation-free regime, but despite this, the use of erosion-free dampers in the appropriate conditions is appropriate, different, providing favorable downstream conditions and reducing the volume of construction work and the cost of the structure.
As a result of cavitation and cavitation-erosion studies of erosion-free energy absorbers in vacuum-cavitation stands (in which simulations are carried out in compliance with gravitational similarity), moreover, for different stages of cavitation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta = K/K_{cr}$$\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K -$$\end{document} cavitation parameter; \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{cr} -$$\end{document} its critical value characterizing the onset of cavitation), the drag coefficients Cx several types of erosion-free dampers (Cx—decreases with the development of cavitation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}), the pulsation components of the horizontal hydrodynamic load on the damper, as well as the standards for the pulsations of the vertical hydrodynamic effects of the flow on the reservoir plate in the installation zone of the erosion-free dampers measured by “point” sensors \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{\prime}:\gamma v_{1}^{2} /2g$$\end{document} (their maximum values are at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \approx 0.5$$\end{document}, during supercavitation they decrease in comparison with those for the zero-cavitation regime), spectra and space–time transverse and longitudinal correlations of these pulsations.
Cavitation parameters were calculated according to the dependence
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K = \left( {H_{har} - H_{cr} } \right):\left( {\frac{{v_{har}^{2} }}{2g}} \right)$$\end{document}
where Hchar = Ha + h, (Ha—pressure above the free surface of the flow in the vacuum—cavitation stand, and for nature, atmospheric pressure; h—height of the water column above the damper; vhar—the characteristic speed of the flow on the damper, which was taken from the diagram of the velocity distribution in front of the damper at the level of the damper top; g—acceleration of free fall; v1—velocity in a compressed section with a depth h1 in front of the damper (the experiments were carried out with the outflow of water from under the shutter).
Hydrodynamic Loads on the Water Chamber with Cavitating Dampers
The data on the hydrodynamic loads on the water tank in the presence of cavitating non-erosion energy absorbers are presented.
It is shown that these loads increase in comparison with the cavitation-free regime, but despite this, the use of erosion-free dampers in the appropriate conditions is appropriate, different, providing favorable downstream conditions and reducing the volume of construction work and the cost of the structure.
As a result of cavitation and cavitation-erosion studies of erosion-free energy absorbers in vacuum-cavitation stands (in which simulations are carried out in compliance with gravitational similarity), moreover, for different stages of cavitation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta = K/K_{cr}$$\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K -$$\end{document} cavitation parameter; \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{cr} -$$\end{document} its critical value characterizing the onset of cavitation), the drag coefficients Cx several types of erosion-free dampers (Cx—decreases with the development of cavitation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}), the pulsation components of the horizontal hydrodynamic load on the damper, as well as the standards for the pulsations of the vertical hydrodynamic effects of the flow on the reservoir plate in the installation zone of the erosion-free dampers measured by “point” sensors \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{\prime}:\gamma v_{1}^{2} /2g$$\end{document} (their maximum values are at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \approx 0.5$$\end{document}, during supercavitation they decrease in comparison with those for the zero-cavitation regime), spectra and space–time transverse and longitudinal correlations of these pulsations.
Cavitation parameters were calculated according to the dependence
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K = \left( {H_{har} - H_{cr} } \right):\left( {\frac{{v_{har}^{2} }}{2g}} \right)$$\end{document}
where Hchar = Ha + h, (Ha—pressure above the free surface of the flow in the vacuum—cavitation stand, and for nature, atmospheric pressure; h—height of the water column above the damper; vhar—the characteristic speed of the flow on the damper, which was taken from the diagram of the velocity distribution in front of the damper at the level of the damper top; g—acceleration of free fall; v1—velocity in a compressed section with a depth h1 in front of the damper (the experiments were carried out with the outflow of water from under the shutter).
Hydrodynamic Loads on the Water Chamber with Cavitating Dampers
Lecture Notes in Civil Engineering
Vatin, Nikolai (Herausgeber:in) / Roshchina, Svetlana (Herausgeber:in) / Serdjuks, Dmitrijs (Herausgeber:in) / Bazarov, Dilshod (Autor:in) / Obidov, Bakhtiyor (Autor:in) / Norkulov, Bekhzod (Autor:in) / Vokhidov, Oybek (Autor:in) / Raimova, Ikboloy (Autor:in)
30.01.2022
8 pages
Aufsatz/Kapitel (Buch)
Elektronische Ressource
Englisch
Hydrodynamic loads on an apron with cavitating dissipators
Springer Verlag | 1987
|Hydrodynamic loads on an apron with cavitating dissipators
Online Contents | 1987
|Reducing response of offshore platforms to wave loads using hydrodynamic buoyant mass dampers
Online Contents | 2014
|Research on hydrodynamic forces of cavitating grid fins
British Library Online Contents | 2005
|RESEARCH ON THE HYDRODYNAMIC CHARACTERISTICS OF CAVITATING GRID FINS
British Library Online Contents | 2006
|