Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Yue’s solution of classical elasticity in n-layered solids: Part 2, mathematical verification
Abstract This paper presents a detailed and rigorous mathematical verification of Yue’s approach, Yue’s treatment, Yue’s method and Yue’s solution in the companion paper for the classical theory of elasticity in n-layered solid. It involves three levels of the mathematical verifications. The first level is to show that Yue’s solution can be automatically and uniformly degenerated into these classical solutions in closed-form such as Kelvin’s, Boussinesq’s, Mindlin’s and bimaterial’s solutions when the material properties and boundary conditions are the same. This mathematical verification also gives and serves a clear and concrete understanding on the mathematical properties and singularities of Yue’s solution in n-layered solids. The second level is to analytically and rigorously show the convergence and singularity of the solution and the satisfaction of the solution to the governing partial differential equations, the interface conditions, the external boundary conditions and the body force loading conditions. This verification also provides the easy and executable means and results for the solutions in n-layered or graded solids to be calculated with any controlled accuracy in association with classical numerical integration techniques. The third level is to demonstrate the applicability and suitability of Yue’s approach, Yue’s treatment, Yue’s method and Yue’s solution to uniformly and systematically derive and formulate exact and complete solutions for other boundary-value problems, mixed-boundary value problems, and initial-boundary value problems in layered solids in the frameworks of classical elasticity, boundary element methods, elastodynamics, Biot’s theory of poroelasticity and thermoelasticity. All of such applications are substantiated by peerreviewed journal publications made by the author and his collaborators over the past 30 years.
Yue’s solution of classical elasticity in n-layered solids: Part 2, mathematical verification
Abstract This paper presents a detailed and rigorous mathematical verification of Yue’s approach, Yue’s treatment, Yue’s method and Yue’s solution in the companion paper for the classical theory of elasticity in n-layered solid. It involves three levels of the mathematical verifications. The first level is to show that Yue’s solution can be automatically and uniformly degenerated into these classical solutions in closed-form such as Kelvin’s, Boussinesq’s, Mindlin’s and bimaterial’s solutions when the material properties and boundary conditions are the same. This mathematical verification also gives and serves a clear and concrete understanding on the mathematical properties and singularities of Yue’s solution in n-layered solids. The second level is to analytically and rigorously show the convergence and singularity of the solution and the satisfaction of the solution to the governing partial differential equations, the interface conditions, the external boundary conditions and the body force loading conditions. This verification also provides the easy and executable means and results for the solutions in n-layered or graded solids to be calculated with any controlled accuracy in association with classical numerical integration techniques. The third level is to demonstrate the applicability and suitability of Yue’s approach, Yue’s treatment, Yue’s method and Yue’s solution to uniformly and systematically derive and formulate exact and complete solutions for other boundary-value problems, mixed-boundary value problems, and initial-boundary value problems in layered solids in the frameworks of classical elasticity, boundary element methods, elastodynamics, Biot’s theory of poroelasticity and thermoelasticity. All of such applications are substantiated by peerreviewed journal publications made by the author and his collaborators over the past 30 years.
Yue’s solution of classical elasticity in n-layered solids: Part 2, mathematical verification
Yue, Zhong-qi Quentin (Autor:in)
Frontiers of Structural and Civil Engineering ; 9 ; 250-285
01.09.2015
36 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Yue’s solution of classical elasticity in n-layered solids: Part 1, mathematical formulation
Springer Verlag | 2015
|Three-layered plate: Elasticity solution
British Library Online Contents | 2014
|Mathematical Theory of Elasticity
British Library Online Contents | 2006
|The Coefficient of Geostatic Stress: Gradient Elasticity vs. Classical Elasticity
British Library Online Contents | 2007
|Mathematical theory of elasticity and concrete
Engineering Index Backfile | 1931
|