Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Lime Cake as an Alternative Stabiliser for Loose Clayey Loams
Abstract Lime Cake (precipitated calcium carbonate PCC), a by-product of sugar production, is proposed as a stabiliser for improvement of loose silty clayey loams. Two inorganic pedogenic and organic precipitated calcium carbonate polymorphs are artificially synthesized into a base loosely compacted loamy soil. Formation, micromorphology, quality of cementing bonds, and physiochemical interactions in the interlayer are modelled at molecular level and verified by a suite of micro-analytical spectrometry techniques. Emphasis is put into determining the impacts of polysaccharides on soil strength and implications on soil pore anatomy. Erodibility, compressibility, volumetric change, and hydro-mechanical behaviour of base, and modified soils at yield and post-yield states are studied. Anomalies in suction-controlled post-yield stress–strain behaviour of modified soils are discussed and explained within the tenets of mechanics of composite soils with double porosity. PCC-reinforcement offers the closest possible packing at optimum water content. Desiccation cracking remains likely, but at relatively higher lower-bound water contents. Under low confinement levels and unsaturated state, strain-hardening prevails. Loss of shear strength on saturation is minimal. When saturated, PCC-reinforced soil develops substantially high levels of shear strength at all strain levels. Higher levels of confinement are needed for organic fibrous and onion-skin coating matters to effectively encrust the soil pore network; such high levels, however, leads to formation of an unwelcomed brittle, strain–softening stress–stress behaviour.
Lime Cake as an Alternative Stabiliser for Loose Clayey Loams
Abstract Lime Cake (precipitated calcium carbonate PCC), a by-product of sugar production, is proposed as a stabiliser for improvement of loose silty clayey loams. Two inorganic pedogenic and organic precipitated calcium carbonate polymorphs are artificially synthesized into a base loosely compacted loamy soil. Formation, micromorphology, quality of cementing bonds, and physiochemical interactions in the interlayer are modelled at molecular level and verified by a suite of micro-analytical spectrometry techniques. Emphasis is put into determining the impacts of polysaccharides on soil strength and implications on soil pore anatomy. Erodibility, compressibility, volumetric change, and hydro-mechanical behaviour of base, and modified soils at yield and post-yield states are studied. Anomalies in suction-controlled post-yield stress–strain behaviour of modified soils are discussed and explained within the tenets of mechanics of composite soils with double porosity. PCC-reinforcement offers the closest possible packing at optimum water content. Desiccation cracking remains likely, but at relatively higher lower-bound water contents. Under low confinement levels and unsaturated state, strain-hardening prevails. Loss of shear strength on saturation is minimal. When saturated, PCC-reinforced soil develops substantially high levels of shear strength at all strain levels. Higher levels of confinement are needed for organic fibrous and onion-skin coating matters to effectively encrust the soil pore network; such high levels, however, leads to formation of an unwelcomed brittle, strain–softening stress–stress behaviour.
Lime Cake as an Alternative Stabiliser for Loose Clayey Loams
Assadi Langroudi, Arya (Autor:in) / Ghadr, S. (Autor:in) / Theron, E. (Autor:in) / Oderinde, S. A. (Autor:in) / Katsipatakis, E. M. (Autor:in)
22.07.2019
13 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Measured effects on engineering properties of clayey subgrade using lime–Homra stabiliser
Taylor & Francis Verlag | 2013
|Field investigations of distribution of contact pressures in sands, sandy loams, and ordinary loams
Online Contents | 1976
|Measured effects on engineering properties of clayey subgrade using limeHomra stabiliser
Online Contents | 2013
|Online Contents | 1968
|