Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Effects of Fine LWA and SAP as Internal Water Curing Agents
Abstract Typical high-performance concrete (HPC) mixtures are characterized by low water-cementitious material ratios, high cement contents, and the incorporation of admixtures. In spite of its superior properties in the hardened state, HPC suffers from many practical difficulties such as its sensitivity to early-age cracking (which is associated with self-desiccation and autogenous shrinkage). In this context, conventional curing procedures are not sufficiently effective to address these limitations. In order to overcome this issue, two strategies, which are based on the use of internal reservoirs of water, have been recently developed. One of these strategies is based on the use of lightweight aggregates (LWA), while the other is based on the use of superabsorbent polymers (SAP). This paper studies and compares the efficiency of the LWA and SAP approaches. Moreover, some of the theoretical aspects that should be taken into account to optimize their application for internal curing of HPC are also discussed. Two fine LWA’s and one SAP are studied in terms of autogenous deformation and compressive strength. Increasing the amounts of LWA or SAP can lead to a reduction of the autogenous deformation and compressive strength (especially when adding large amounts). By selecting appropriate materials and controlling their amount, size, and porosity, highly efficient internal water curing can be ensured.
Effects of Fine LWA and SAP as Internal Water Curing Agents
Abstract Typical high-performance concrete (HPC) mixtures are characterized by low water-cementitious material ratios, high cement contents, and the incorporation of admixtures. In spite of its superior properties in the hardened state, HPC suffers from many practical difficulties such as its sensitivity to early-age cracking (which is associated with self-desiccation and autogenous shrinkage). In this context, conventional curing procedures are not sufficiently effective to address these limitations. In order to overcome this issue, two strategies, which are based on the use of internal reservoirs of water, have been recently developed. One of these strategies is based on the use of lightweight aggregates (LWA), while the other is based on the use of superabsorbent polymers (SAP). This paper studies and compares the efficiency of the LWA and SAP approaches. Moreover, some of the theoretical aspects that should be taken into account to optimize their application for internal curing of HPC are also discussed. Two fine LWA’s and one SAP are studied in terms of autogenous deformation and compressive strength. Increasing the amounts of LWA or SAP can lead to a reduction of the autogenous deformation and compressive strength (especially when adding large amounts). By selecting appropriate materials and controlling their amount, size, and porosity, highly efficient internal water curing can be ensured.
Effects of Fine LWA and SAP as Internal Water Curing Agents
Sensale, Gemma Rodríguez (Autor:in) / Goncalves, Arlindo Freitas (Autor:in)
12.07.2014
10 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Taylor & Francis Verlag | 2013
|British Library Online Contents | 2013
|Internal water curing with Liapor aggregates
UB Braunschweig | 2005
|