Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Static-based early-damage detection using symbolic data analysis and unsupervised learning methods
Abstract A large amount of researches and studies have been recently performed by applying statistical and machine learning techniques for vibration-based damage detection. However, the global character inherent to the limited number of modal properties issued from operational modal analysis may be not appropriate for early-damage, which has generally a local character. The present paper aims at detecting this type of damage by using static SHM data and by assuming that early-damage produces dead load redistribution. To achieve this objective a data driven strategy is proposed, consisting of the combination of advanced statistical and machine learning methods such as principal component analysis, symbolic data analysis and cluster analysis. From this analysis it was observed that, under the noise levels measured on site, the proposed strategy is able to automatically detect stiffness reduction in stay cables reaching at least 1%.
Static-based early-damage detection using symbolic data analysis and unsupervised learning methods
Abstract A large amount of researches and studies have been recently performed by applying statistical and machine learning techniques for vibration-based damage detection. However, the global character inherent to the limited number of modal properties issued from operational modal analysis may be not appropriate for early-damage, which has generally a local character. The present paper aims at detecting this type of damage by using static SHM data and by assuming that early-damage produces dead load redistribution. To achieve this objective a data driven strategy is proposed, consisting of the combination of advanced statistical and machine learning methods such as principal component analysis, symbolic data analysis and cluster analysis. From this analysis it was observed that, under the noise levels measured on site, the proposed strategy is able to automatically detect stiffness reduction in stay cables reaching at least 1%.
Static-based early-damage detection using symbolic data analysis and unsupervised learning methods
Santos, João Pedro (Autor:in) / Cremona, Christian (Autor:in) / Orcesi, André D. (Autor:in) / Silveira, Paulo (Autor:in) / Calado, Luis (Autor:in)
16.12.2014
16 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Integrated SHM Systems: Damage Detection Through Unsupervised Learning and Data Fusion
Springer Verlag | 2021
|Unsupervised structural damage detection and localization using deep learning and machine learning
BASE | 2021
|Structural Damage Detection Using Static Test Data
British Library Conference Proceedings | 2014
|