Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Predicting Hydrological Drought Conditions of Boryeong Dam Inflow Using Climate Variability in South Korea
When a hydrological drought occurs due to a decrease in water storage, there is no choice but to supply limited water. Because this has a devastating impact on the community, it is necessary to identify causes and make predictions for emergency planning. The state of change in dam inflow can be used to confirm hydrological drought conditions using the Standardized Runoff Index (SRI), and meteorological drought and climate variability are used to identify causal relationships. Multiple Linear Regression (MLR) and Generalized Additive Model (GAM) models are developed to predict accumulated hydrological drought for 6, 12, and 24 months in the Boryeong Dam basin, and the Nash-Sutcliffe model efficiency coefficient (NSE) exceeded 0.4, satisfying the suitability criteria. The estimation ability is highest when predicting a 12-month annual drought, and reliability can be further increased by reflecting some climate fluctuations in a non-linear form. The droughts of 6 month and 24 month cumulative scales are significantly influenced by the Western Hemisphere Warm Pool (WHWP) extending from the eastern North Pacific to the North Atlantic and by the Nino 3.4 region in the tropical Pacific. Furthermore, it is anticipated that the drought conditions of the inflow volume to the Boryeong Dam will worsen with increasing sea surface temperatures in both regions.
Predicting Hydrological Drought Conditions of Boryeong Dam Inflow Using Climate Variability in South Korea
When a hydrological drought occurs due to a decrease in water storage, there is no choice but to supply limited water. Because this has a devastating impact on the community, it is necessary to identify causes and make predictions for emergency planning. The state of change in dam inflow can be used to confirm hydrological drought conditions using the Standardized Runoff Index (SRI), and meteorological drought and climate variability are used to identify causal relationships. Multiple Linear Regression (MLR) and Generalized Additive Model (GAM) models are developed to predict accumulated hydrological drought for 6, 12, and 24 months in the Boryeong Dam basin, and the Nash-Sutcliffe model efficiency coefficient (NSE) exceeded 0.4, satisfying the suitability criteria. The estimation ability is highest when predicting a 12-month annual drought, and reliability can be further increased by reflecting some climate fluctuations in a non-linear form. The droughts of 6 month and 24 month cumulative scales are significantly influenced by the Western Hemisphere Warm Pool (WHWP) extending from the eastern North Pacific to the North Atlantic and by the Nino 3.4 region in the tropical Pacific. Furthermore, it is anticipated that the drought conditions of the inflow volume to the Boryeong Dam will worsen with increasing sea surface temperatures in both regions.
Predicting Hydrological Drought Conditions of Boryeong Dam Inflow Using Climate Variability in South Korea
KSCE J Civ Eng
Noh, Seonhui (Autor:in) / Felix, Micah Lourdes (Autor:in) / Oh, Seungchan (Autor:in) / Jung, Kwansue (Autor:in)
KSCE Journal of Civil Engineering ; 28 ; 5384-5395
01.11.2024
12 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
DOAJ | 2023
|