Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Direct capture efficiency of range hoods in the confined kitchen space
Range hood is a local ventilation device applied widely in residential kitchen for maintaining healthy environment. This study firstly defines the direct capture efficiency (DCE) based on the two-zone model in a confined kitchen space. A mass flux ratio of the secondary captured pollutant to the entrained pollutant from the room zone is proposed for the determination of DCE, where the distribution coefficient is firstly solved, and then its sensitivity analysis on the DCE is carried out. To validate the mass flux ratio and concisely identify the DCE, a virtual purification method that artificially sets the escaped pollutant to zero, is further applied. Compared with the newly developed DCE, the existing indexes, such as contaminant removal efficiency (CRE), total capture efficiency (TCE), fail to differentiate the direct capture from the total capture. Finally, the effects of such factors as makeup airflow pattern, exhaust flow rate, cooking source temperature and the individual occupied/unoccupied on the DCE are fully studied. It is confirmed that different makeup airflow pattern results in distinguished airflow distribution, which makes a significant difference of more than 30% in DCE. Over 50% increase of DCE can be achieved when the exhaust flow rate is increased from 300 to 600 m3/h. About 30% decrease of DCE is observed with the increased cooking source temperature from 100 to 300 °C, and 10% increase of DCE is appeared in the individual occupied case. This reasonable definition and determination of DCE would help to improve the real capture performance of range hoods.
Direct capture efficiency of range hoods in the confined kitchen space
Range hood is a local ventilation device applied widely in residential kitchen for maintaining healthy environment. This study firstly defines the direct capture efficiency (DCE) based on the two-zone model in a confined kitchen space. A mass flux ratio of the secondary captured pollutant to the entrained pollutant from the room zone is proposed for the determination of DCE, where the distribution coefficient is firstly solved, and then its sensitivity analysis on the DCE is carried out. To validate the mass flux ratio and concisely identify the DCE, a virtual purification method that artificially sets the escaped pollutant to zero, is further applied. Compared with the newly developed DCE, the existing indexes, such as contaminant removal efficiency (CRE), total capture efficiency (TCE), fail to differentiate the direct capture from the total capture. Finally, the effects of such factors as makeup airflow pattern, exhaust flow rate, cooking source temperature and the individual occupied/unoccupied on the DCE are fully studied. It is confirmed that different makeup airflow pattern results in distinguished airflow distribution, which makes a significant difference of more than 30% in DCE. Over 50% increase of DCE can be achieved when the exhaust flow rate is increased from 300 to 600 m3/h. About 30% decrease of DCE is observed with the increased cooking source temperature from 100 to 300 °C, and 10% increase of DCE is appeared in the individual occupied case. This reasonable definition and determination of DCE would help to improve the real capture performance of range hoods.
Direct capture efficiency of range hoods in the confined kitchen space
Build. Simul.
Cao, Changsheng (Autor:in) / Xie, Wuhao (Autor:in) / Xia, Yunfei (Autor:in) / Gao, Jun (Autor:in)
Building Simulation ; 15 ; 1799-1813
01.10.2022
15 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Derivation of capture efficiency of kitchen range hoods in a confined space
Online Contents | 1996
|Derivation of capture efficiency of kitchen range hoods in a confined space
British Library Online Contents | 1996
|Residential Kitchen Range Hoods – Buoyancy‐Capture Principle and Capture Efficiency Revisited
Wiley | 1997
|Investigation on inherent angle ventilation control of residential kitchen range hoods
DOAJ | 2025
|