Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Resistance of Lime-Natural Pozzolan Mortars in Salt-Laden Environments
Salt crystallization belongs to the main decay processes in historic masonry mortars in which lime-pozzolan binders were often used. In this paper, the resistance to salts crystallization, their accumulation, and the microstructural changes of lime mortars with five different natural pozzolans are thoroughly investigated. Natural, fine ground, thermally untreated pozzolans (chalcedonite, pumice, zeolite, spongilite, and lava) were used as a partial replacement for lime in the amount of 10%, 20%, and 40%. The salt crystallization resistance of mortars were determined using Na2SO4, NaCl, and NH4NO3 solutions. The microstructure of the mortars after the testing was monitored with a scanning electron microscope, the accumulation of anions in the mortars was determined by chemical analyses and mass increases, and the formation of new minerals was confirmed using X-ray diffraction analysis. Nitrates were most accumulated in mortars with lava, sulfates in spongilite mortars, and chlorides in mortars with chalcedonite. Both crystalline and amorphous neoplasms were observed in the microstructures of mortars, the most common being nitrocalcite, cesanite, gypsum, ettringite, and hydrocalumite. The results showed that different natural pozzolans are a bit more suited to different saline environments and it should be considered when using them.
Resistance of Lime-Natural Pozzolan Mortars in Salt-Laden Environments
Salt crystallization belongs to the main decay processes in historic masonry mortars in which lime-pozzolan binders were often used. In this paper, the resistance to salts crystallization, their accumulation, and the microstructural changes of lime mortars with five different natural pozzolans are thoroughly investigated. Natural, fine ground, thermally untreated pozzolans (chalcedonite, pumice, zeolite, spongilite, and lava) were used as a partial replacement for lime in the amount of 10%, 20%, and 40%. The salt crystallization resistance of mortars were determined using Na2SO4, NaCl, and NH4NO3 solutions. The microstructure of the mortars after the testing was monitored with a scanning electron microscope, the accumulation of anions in the mortars was determined by chemical analyses and mass increases, and the formation of new minerals was confirmed using X-ray diffraction analysis. Nitrates were most accumulated in mortars with lava, sulfates in spongilite mortars, and chlorides in mortars with chalcedonite. Both crystalline and amorphous neoplasms were observed in the microstructures of mortars, the most common being nitrocalcite, cesanite, gypsum, ettringite, and hydrocalumite. The results showed that different natural pozzolans are a bit more suited to different saline environments and it should be considered when using them.
Resistance of Lime-Natural Pozzolan Mortars in Salt-Laden Environments
RILEM Bookseries
Jędrzejewska, Agnieszka (Herausgeber:in) / Kanavaris, Fragkoulis (Herausgeber:in) / Azenha, Miguel (Herausgeber:in) / Benboudjema, Farid (Herausgeber:in) / Schlicke, Dirk (Herausgeber:in) / Vyšvařil, Martin (Autor:in) / Bayer, Patrik (Autor:in) / Dvořák, Karel (Autor:in)
International RILEM Conference on Synergising expertise towards sustainability and robustness of CBMs and concrete structures ; 2023 ; Milos Island, Greece
11.06.2023
10 pages
Aufsatz/Kapitel (Buch)
Elektronische Ressource
Englisch
Strength-porosity relationships in lime-pozzolan mortars
British Library Online Contents | 2006
|Strength–porosity relationships in lime–pozzolan mortars
Online Contents | 2006
|Practical application of lime-pozzolan mortars to damp masonry
TIBKAT | 2019
|Lime/pozzolan/geopolymer systems: Performance in pastes and mortars
Elsevier | 2020
|