Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Combining Artificial Neural Networks and Genetic Algorithms for Rock Cuttings Slopes Stability Condition Identification
Abstract Keeping large-scale transportation infrastructure networks, such as railway networks, operational under all conditions is one of the major challenges today. The budgetary constraints for maintenance and network operation and the network dimension are two of the main factors that make the management of a transportation network such a challenging task. Hence, aiming to assist the management of a transportation network, a data-driven model is proposed for stability condition identification of rock cuttings slopes. It should be noted that one of the key points of the proposed system is to avoid data from complex monitoring equipment or laboratory expensive testes. Accordingly, only information taken from routine inspections (visual information) and complemented with geometric and geologic data will be used to feed the models. Therefore, in this work the flexible learning capabilities of Artificial Neural Networks (ANN) were used to fit a data-driven model for Earthwork Hazard Category (EHC) identification. Considering the high number of parameters involved in EHC identification, Genetic Algorithms (GA) were applied for input feature selection purposes. The proposed models were addressed following a nominal classification strategy. In addition, to overcome the problem of imbalanced data (since typically good conditions are much common than bad ones), three training sampling approaches were explored: no resampling, SMOTE and Oversampling. The achieved modelling results are presented and discussed, detailing GA effectiveness and ANNs performance.
Combining Artificial Neural Networks and Genetic Algorithms for Rock Cuttings Slopes Stability Condition Identification
Abstract Keeping large-scale transportation infrastructure networks, such as railway networks, operational under all conditions is one of the major challenges today. The budgetary constraints for maintenance and network operation and the network dimension are two of the main factors that make the management of a transportation network such a challenging task. Hence, aiming to assist the management of a transportation network, a data-driven model is proposed for stability condition identification of rock cuttings slopes. It should be noted that one of the key points of the proposed system is to avoid data from complex monitoring equipment or laboratory expensive testes. Accordingly, only information taken from routine inspections (visual information) and complemented with geometric and geologic data will be used to feed the models. Therefore, in this work the flexible learning capabilities of Artificial Neural Networks (ANN) were used to fit a data-driven model for Earthwork Hazard Category (EHC) identification. Considering the high number of parameters involved in EHC identification, Genetic Algorithms (GA) were applied for input feature selection purposes. The proposed models were addressed following a nominal classification strategy. In addition, to overcome the problem of imbalanced data (since typically good conditions are much common than bad ones), three training sampling approaches were explored: no resampling, SMOTE and Oversampling. The achieved modelling results are presented and discussed, detailing GA effectiveness and ANNs performance.
Combining Artificial Neural Networks and Genetic Algorithms for Rock Cuttings Slopes Stability Condition Identification
Tinoco, Joaquim (Autor:in) / Gomes Correia, António (Autor:in) / Cortez, Paulo (Autor:in) / Toll, David (Autor:in)
25.09.2019
14 pages
Aufsatz/Kapitel (Buch)
Elektronische Ressource
Englisch
General report: Cuttings and natural slopes
British Library Conference Proceedings | 1998
|Stability Condition Identification of Rock and Soil Cutting Slopes Based on Soft Computing
British Library Online Contents | 2018
|British Library Conference Proceedings | 1999
|