Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Adsorption of chlortetracycline from aquaculture wastewater using modified zeolites
In this study, lanthanum modified zeolite (La-Z) was used to adsorb chlortetracycline (CTC) from aquaculture wastewater. La-Z was characterized by SEM, TEM, EDS, XRD, FTIR and BET. The effects various factors on the adsorption of CTC by La-Z were investigated, including the lanthanum modification concentration on zeolites, the dosage of La-Z, solution pH and reaction time. Orthogonal experiments were performed to determine the optimal adsorption conditions. Adsorption kinetics were studied by quasi-first-order model, quasi-second-order model, Weber-Morris, Boyd and Bangham models, while isotherms were analyzed by the Langmuir and Freundlich models. The removal rate reached 98.4%, when the modified concentration was 0.02 mol/L, the adsorbent dosage was 0.04 g, the initial concentration of CTC was 5 mg/L, the adsorption time was 20 min, and the pH was 7. The initial CTC concentration had the greatest influence on the adsorption process. The kinetic results showed a significant linear correlation between the experimental results and the quasi-second-order kinetic model. From the results of the internal diffusion model, it was found that the La-Z adsorption rate was controlled by both internal diffusion and external diffusion, in a multi-step process. The adsorption isotherm conforms to the Langmuir model, with the maximum adsorption quantity reaching 127.55 mg/g. Thermodynamic analysis showed that the adsorption process was an endothermic process of entropy increase, which occurs spontaneously.
Adsorption of chlortetracycline from aquaculture wastewater using modified zeolites
In this study, lanthanum modified zeolite (La-Z) was used to adsorb chlortetracycline (CTC) from aquaculture wastewater. La-Z was characterized by SEM, TEM, EDS, XRD, FTIR and BET. The effects various factors on the adsorption of CTC by La-Z were investigated, including the lanthanum modification concentration on zeolites, the dosage of La-Z, solution pH and reaction time. Orthogonal experiments were performed to determine the optimal adsorption conditions. Adsorption kinetics were studied by quasi-first-order model, quasi-second-order model, Weber-Morris, Boyd and Bangham models, while isotherms were analyzed by the Langmuir and Freundlich models. The removal rate reached 98.4%, when the modified concentration was 0.02 mol/L, the adsorbent dosage was 0.04 g, the initial concentration of CTC was 5 mg/L, the adsorption time was 20 min, and the pH was 7. The initial CTC concentration had the greatest influence on the adsorption process. The kinetic results showed a significant linear correlation between the experimental results and the quasi-second-order kinetic model. From the results of the internal diffusion model, it was found that the La-Z adsorption rate was controlled by both internal diffusion and external diffusion, in a multi-step process. The adsorption isotherm conforms to the Langmuir model, with the maximum adsorption quantity reaching 127.55 mg/g. Thermodynamic analysis showed that the adsorption process was an endothermic process of entropy increase, which occurs spontaneously.
Adsorption of chlortetracycline from aquaculture wastewater using modified zeolites
Yu, Runqiang (Autor:in) / Yu, Xiaocai (Autor:in) / Xue, Bining (Autor:in) / Liao, Jiaqi (Autor:in) / Zhu, Wanting (Autor:in) / Tian, Siyao (Autor:in)
Journal of Environmental Science and Health, Part A ; 55 ; 573-584
15.04.2020
12 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Effect of Acid–Base Modified Biochar on Chlortetracycline Adsorption by Purple Soil
DOAJ | 2022
|Wastewater management through aquaculture
TIBKAT | 2018
|Adsorption of Dye from Wastewater by Modified Sawdust
British Library Conference Proceedings | 2015
|