Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Bearing capacity factor for strip foundations on unsaturated clay
The matric suction in unsaturated soil depends on the type of soil and various flux conditions i.e., infiltration, evaporation and no flow. The shear strength of unsaturated soil changes with change in matric suction leading to varying resistance of soil under various flow conditions. In this study, the bearing capacity of strip foundations resting over unsaturated clay considering variation of matric suction with depth for different surface flux conditions and position of water table, has been obtained using finite element lower bound limit analysis. Modified Mohr-Coulomb yield criteria based on unified effective stress approach has been employed to incorporate the contribution of matric suction stress to the failure condition. A non-dimensional bearing capacity factor was introduced to estimate the bearing capacity of strip foundations and presented as a function of different influencing parameters such as foundation width, water table depth, soil properties, various flow conditions and their flow rate, and surcharge pressure. The influence of variation of unit weight of soil in the unsaturated zone, air entry and pore size distribution parameters, residual degree of saturation of soil, specific gravity of soil solids, and foundation-soil interface roughness on the bearing capacity has also been examined and found to be insignificant.
Bearing capacity factor for strip foundations on unsaturated clay
The matric suction in unsaturated soil depends on the type of soil and various flux conditions i.e., infiltration, evaporation and no flow. The shear strength of unsaturated soil changes with change in matric suction leading to varying resistance of soil under various flow conditions. In this study, the bearing capacity of strip foundations resting over unsaturated clay considering variation of matric suction with depth for different surface flux conditions and position of water table, has been obtained using finite element lower bound limit analysis. Modified Mohr-Coulomb yield criteria based on unified effective stress approach has been employed to incorporate the contribution of matric suction stress to the failure condition. A non-dimensional bearing capacity factor was introduced to estimate the bearing capacity of strip foundations and presented as a function of different influencing parameters such as foundation width, water table depth, soil properties, various flow conditions and their flow rate, and surcharge pressure. The influence of variation of unit weight of soil in the unsaturated zone, air entry and pore size distribution parameters, residual degree of saturation of soil, specific gravity of soil solids, and foundation-soil interface roughness on the bearing capacity has also been examined and found to be insignificant.
Bearing capacity factor for strip foundations on unsaturated clay
Sahoo, Jagdish Prasad (Autor:in) / Mushtaq, Mansha (Autor:in)
Geomechanics and Geoengineering ; 19 ; 551-568
03.07.2024
18 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Approximation of undrained bearing capacity of strip foundations on heterogeneous marine clay
DOAJ | 2019
|Bearing capacity of strip and circular foundations on undrained clay subjected to eccentric loads
British Library Online Contents | 2002
|