Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Comparison of Exhaust Emissions Resulting from Cold- and Hot-Start Motorcycle Driving Modes
This study investigated the emissions of criteria air pollutants (carbon monoxide [CO], hydrocarbons [HCs], and oxides of nitrogen [NOx]) from motorcycle exhaust at cold- and hot-start driving cycles on a chassis dynamometer. Seven four-stroke carburetors and two fuel-injection motorcycles were tested. As expected, the emission factors (g/km) of CO and HCs increased during cold-start driving. The ratio of emission factors (g/km) for cold- and hot-start driving cycles ranged from 1.1–1.5 (for CO) to 1.2–2.8 (for HCs). However, the difference of NOx emissions between the cold- and hot-start cycles was not pronounced. Further, the cold-/hot-start ratios of CO and HCs from 50-cm3 motorcycles were higher than those of 100- and 125-cm3 motorcycles; however, the carbon dioxide (CO2) emission was the lowest for the four-stroke motorcycles. High engine temperature and poor combustion efficiency of smaller cylinder-capacity motorcycles may contribute a significant amount of exhaust emission. Additionally, the fuel-base emission factor (g/L-fuel) ratios were low compared with the distance-base emission factor (g/km) in cold- and hot-start driving. This indicates that the effect of catalyst efficiency was greater than the effect of fuel combustion in the tested motorcycles. A comparison of emission ratios of motorcycles and passenger cars shows that the warm-up may be more important for cars, especially under low-temperature conditions. However, the motorcycle contributes a large proportion of CO and HC emissions in many Asian counties. The difference between cold- and hot-start emissions may affect inventory accuracy, especially in HC emissions. For those tropical or subtropical countries in which motorcycles are one of the dominant air pollution sources, optimizing the engine combustion efficiency and developing new catalyst technology of motorcycles at cold-start conditions are the key issues to be improved.
Comparison of Exhaust Emissions Resulting from Cold- and Hot-Start Motorcycle Driving Modes
This study investigated the emissions of criteria air pollutants (carbon monoxide [CO], hydrocarbons [HCs], and oxides of nitrogen [NOx]) from motorcycle exhaust at cold- and hot-start driving cycles on a chassis dynamometer. Seven four-stroke carburetors and two fuel-injection motorcycles were tested. As expected, the emission factors (g/km) of CO and HCs increased during cold-start driving. The ratio of emission factors (g/km) for cold- and hot-start driving cycles ranged from 1.1–1.5 (for CO) to 1.2–2.8 (for HCs). However, the difference of NOx emissions between the cold- and hot-start cycles was not pronounced. Further, the cold-/hot-start ratios of CO and HCs from 50-cm3 motorcycles were higher than those of 100- and 125-cm3 motorcycles; however, the carbon dioxide (CO2) emission was the lowest for the four-stroke motorcycles. High engine temperature and poor combustion efficiency of smaller cylinder-capacity motorcycles may contribute a significant amount of exhaust emission. Additionally, the fuel-base emission factor (g/L-fuel) ratios were low compared with the distance-base emission factor (g/km) in cold- and hot-start driving. This indicates that the effect of catalyst efficiency was greater than the effect of fuel combustion in the tested motorcycles. A comparison of emission ratios of motorcycles and passenger cars shows that the warm-up may be more important for cars, especially under low-temperature conditions. However, the motorcycle contributes a large proportion of CO and HC emissions in many Asian counties. The difference between cold- and hot-start emissions may affect inventory accuracy, especially in HC emissions. For those tropical or subtropical countries in which motorcycles are one of the dominant air pollution sources, optimizing the engine combustion efficiency and developing new catalyst technology of motorcycles at cold-start conditions are the key issues to be improved.
Comparison of Exhaust Emissions Resulting from Cold- and Hot-Start Motorcycle Driving Modes
Yao, Yung-Chen (Autor:in) / Tsai, Jiun-Horng (Autor:in) / Ye, Hui-Fen (Autor:in) / Chiang, Hung-Lung (Autor:in)
Journal of the Air & Waste Management Association ; 59 ; 1339-1346
01.11.2009
8 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Cold-Start Motor Vehicle Emissions Model
British Library Conference Proceedings | 1994
|Cold-Start Motor Vehicle Emissions Model
British Library Conference Proceedings | 1994
|