Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
The Steubenville Comprehensive Air Monitoring Program (SCAMP): Associations among Fine Particulate Matter, Co-Pollutants, and Meteorological Conditions
We determined 24-hr average ambient concentrations of PM2.5 and its ionic and carbonaceous components in Steubenville, OH, between May 2000 and May 2002. We also determined daily average gaseous co-pollutant concentrations, meteorological conditions, and pollen and mold spore counts. Data were analyzed graphically and by linear regression and time series models. Multiple-day episodes of elevated fine particulate matter (PM2.5) concentrations often occurred during periods of locally high temperature (especially during summer), high pressure, or low wind speed (especially during winter) and generally ended with the passage of a frontal system. After removing autocorrelation, we observed statistically significant positive associations between concentrations of PM2.5 and concentrations of CO, NOx, and SO2. Associations with NOx and CO exhibited significant seasonal dependencies, with the strongest correlations during fall and winter. NOx, CO, SO2, O3, temperature, relative humidity, and wind speed were all significant predictors of PM2.5 concentration in a time-series model with external regressors, which successfully accounted for 79% of the variance in log-transformed daily PM2.5 concentrations. Coefficient estimates for NOx and temperature varied significantly by season. The results provide insight that may be useful in the development of future PM2.5 reduction strategies for Steubenville. Additionally, they demonstrate the need for PM epidemiology studies in Steubenville (and elsewhere) to carefully consider the potential confounding effects of gaseous co-pollutants, such as CO and NOx, and their seasonally dependent associations with PM2.5.
The Steubenville Comprehensive Air Monitoring Program (SCAMP): Associations among Fine Particulate Matter, Co-Pollutants, and Meteorological Conditions
We determined 24-hr average ambient concentrations of PM2.5 and its ionic and carbonaceous components in Steubenville, OH, between May 2000 and May 2002. We also determined daily average gaseous co-pollutant concentrations, meteorological conditions, and pollen and mold spore counts. Data were analyzed graphically and by linear regression and time series models. Multiple-day episodes of elevated fine particulate matter (PM2.5) concentrations often occurred during periods of locally high temperature (especially during summer), high pressure, or low wind speed (especially during winter) and generally ended with the passage of a frontal system. After removing autocorrelation, we observed statistically significant positive associations between concentrations of PM2.5 and concentrations of CO, NOx, and SO2. Associations with NOx and CO exhibited significant seasonal dependencies, with the strongest correlations during fall and winter. NOx, CO, SO2, O3, temperature, relative humidity, and wind speed were all significant predictors of PM2.5 concentration in a time-series model with external regressors, which successfully accounted for 79% of the variance in log-transformed daily PM2.5 concentrations. Coefficient estimates for NOx and temperature varied significantly by season. The results provide insight that may be useful in the development of future PM2.5 reduction strategies for Steubenville. Additionally, they demonstrate the need for PM epidemiology studies in Steubenville (and elsewhere) to carefully consider the potential confounding effects of gaseous co-pollutants, such as CO and NOx, and their seasonally dependent associations with PM2.5.
The Steubenville Comprehensive Air Monitoring Program (SCAMP): Associations among Fine Particulate Matter, Co-Pollutants, and Meteorological Conditions
Connell, Daniel P. (Autor:in) / Withum, Jeffrey A. (Autor:in) / Winter, Stephen E. (Autor:in) / Statnick, Robert M. (Autor:in) / Bilonick, Richard A. (Autor:in)
Journal of the Air & Waste Management Association ; 55 ; 481-496
01.04.2005
16 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Taylor & Francis Verlag | 2005
|