Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Adsorption Behavior of Toluene on Modified 1X Molecular Sieves
In this paper, the toluene adsorption/desorption properties of modified 13X molecular sieves (M-13X) are discussed. M-13X molecular sieves were prepared by acidic and steam treatments of 13X molecular sieves. The structural parameters of M-13X were evaluated and compared with those of other molecular sieves (HY, HZSM-5, Cs7NaMOR, and a commercial 13X). The results show that the specific surface area, average pore diameter, and pore volume of M-13X were 414.17 m2/g, 2.98 nm, and 0.31 mL/g, respectively. The pore size distribution of M-13X was 1.8–3.0 nm. Because of its larger Si/Al ratio (Si/Al = 6.77), the hydrophobicity of M-13X is much higher than that of 13X (Si/Al = 1.28), indicating that it is particularly well suited to toluene control applications. The saturation adsorption capacity of M-13X was 0.045 g/g for simulated toluene at a temperature of 293 K and a relative humidity of 50%. The optimal regeneration temperature of M-13X was 473 K for 120 min with a hot air flow rate of 140 L/min.
The modified 13X molecular sieves (M-13X) are adsorbents with a high adsorption capacity and great hydrophobicity, suitable for the treatment of VOCs. The purpose of the present investigation is to provide a practical guide for their design.
Adsorption Behavior of Toluene on Modified 1X Molecular Sieves
In this paper, the toluene adsorption/desorption properties of modified 13X molecular sieves (M-13X) are discussed. M-13X molecular sieves were prepared by acidic and steam treatments of 13X molecular sieves. The structural parameters of M-13X were evaluated and compared with those of other molecular sieves (HY, HZSM-5, Cs7NaMOR, and a commercial 13X). The results show that the specific surface area, average pore diameter, and pore volume of M-13X were 414.17 m2/g, 2.98 nm, and 0.31 mL/g, respectively. The pore size distribution of M-13X was 1.8–3.0 nm. Because of its larger Si/Al ratio (Si/Al = 6.77), the hydrophobicity of M-13X is much higher than that of 13X (Si/Al = 1.28), indicating that it is particularly well suited to toluene control applications. The saturation adsorption capacity of M-13X was 0.045 g/g for simulated toluene at a temperature of 293 K and a relative humidity of 50%. The optimal regeneration temperature of M-13X was 473 K for 120 min with a hot air flow rate of 140 L/min.
The modified 13X molecular sieves (M-13X) are adsorbents with a high adsorption capacity and great hydrophobicity, suitable for the treatment of VOCs. The purpose of the present investigation is to provide a practical guide for their design.
Adsorption Behavior of Toluene on Modified 1X Molecular Sieves
Yu, Yunfeng (Autor:in) / Zheng, Liangwei (Autor:in) / Wang, Jiade (Autor:in)
Journal of the Air & Waste Management Association ; 62 ; 1227-1232
01.10.2012
6 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Adsorption of Proteins on Mesoporous Molecular Sieves
British Library Online Contents | 2001
|Adsorption of Methyl Tertiary Butyl Ether on Hydrophobic Molecular Sieves
British Library Online Contents | 2004
|Antibacterial mesoporous molecular sieves modified with polymeric N-halamine
British Library Online Contents | 2016
|Antibacterial mesoporous molecular sieves modified with polymeric N-halamine
British Library Online Contents | 2016
|