Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Text-mining building maintenance work orders for component fault frequency
Operators’ work order descriptions in computerized maintenance management systems (CMMS) represent an untapped opportunity to benchmark a facility’s maintenance and operation performance. However, it is challenging to carry out analytics on these large and amorphous databases. This paper puts forward a text-mining method to extract information about failure patterns in building systems and components from CMMS databases. The method is executed in three steps. Step 1 is pre-processing to convert work order descriptions into a mathematical form that lends itself to a quantitative lexical analysis. Step 2 is clustering to focus on interesting sections of a CMMS database that contain work orders about failures in building systems and components – rather than less interesting routine maintenance and inspection activities. Step 3 is association rule-mining to identify the coexistence tendencies among the terms of cluster of interest (e.g. coexistence of the terms ‘radiator’ and ‘leak’). This text-mining method is demonstrated by using two data sets. One data set was from a central heating and cooling plant with four boilers and five chillers; the other data set was from a cluster of 44 buildings. The results provide insights into per equipment breakdown of failure events, top system and component-level failure modes, and their occurrence frequencies.
Text-mining building maintenance work orders for component fault frequency
Operators’ work order descriptions in computerized maintenance management systems (CMMS) represent an untapped opportunity to benchmark a facility’s maintenance and operation performance. However, it is challenging to carry out analytics on these large and amorphous databases. This paper puts forward a text-mining method to extract information about failure patterns in building systems and components from CMMS databases. The method is executed in three steps. Step 1 is pre-processing to convert work order descriptions into a mathematical form that lends itself to a quantitative lexical analysis. Step 2 is clustering to focus on interesting sections of a CMMS database that contain work orders about failures in building systems and components – rather than less interesting routine maintenance and inspection activities. Step 3 is association rule-mining to identify the coexistence tendencies among the terms of cluster of interest (e.g. coexistence of the terms ‘radiator’ and ‘leak’). This text-mining method is demonstrated by using two data sets. One data set was from a central heating and cooling plant with four boilers and five chillers; the other data set was from a cluster of 44 buildings. The results provide insights into per equipment breakdown of failure events, top system and component-level failure modes, and their occurrence frequencies.
Text-mining building maintenance work orders for component fault frequency
Gunay, H. Burak (Autor:in) / Shen, Weiming (Autor:in) / Yang, Chunsheng (Autor:in)
Building Research & Information ; 47 ; 518-533
04.07.2019
16 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Text-mining building maintenance work orders for component fault frequency
British Library Online Contents | 2019
|Operational text-mining methods for enhancing building maintenance management
Taylor & Francis Verlag | 2021
|Analysis of building maintenance requests using a text mining approach: building services evaluation
Taylor & Francis Verlag | 2020
|BIM-based framework for automatic scheduling of facility maintenance work orders
British Library Online Contents | 2018
|BIM-based framework for automatic scheduling of facility maintenance work orders
British Library Online Contents | 2018
|