Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Applying Hexagonal Nanostructured Zeolite Particles for Acetone Removal
This study examines the performance of a new adsorbent, hexagonal nanostructured zeolite particles (HNZP) for acetone adsorption and compares the results with that of commercial mobil synthetic zeolite-5 (ZSM-5) type zeolite. The HNZP is a pure siliceous adsorbent with different values of pore diameter and surface area being adjustable by the manufacturing condition. The results indicate that a slight increase in the average pore diameter (d) of HNZP from 2 to 2.5 nm leads to an increase in the acetone adsorption capacity, although its surface area is decreased, in which case (d = 2.5 nm) the adsorption capacity of fresh HNZP is better than that of ZSM-5 zeolite. Even for the fresh HNZP (d = 2 nm) of which the adsorption capacity is less than that of the ZSM-5 zeolite at relative humidity (RH) of 0%, its adsorption capacity is not deteriorated after repeated regeneration, but the adsorption capacity of regenerated ZSM-5 zeolite decays markedly. Thus, after only one regeneration, the adsorption capacity of HNZP (d = 2 nm) becomes better than that of the ZSM-5 zeolite. The decrease in the adsorption capacity of regenerated ZSM-5 zeolite might be because of its aluminum content that catalyzes the acetone into coke and, thus, blocks the adsorption sites. Furthermore, result on the moisture effect shows that because the pure siliceous HNZP was more hydrophobic than the ZSM-5 zeolite, the acetone adsorption efficiency of fresh HNZP (d = 2 nm) is better than that of ZSM-5 zeolite at RH = 50%.
Applying Hexagonal Nanostructured Zeolite Particles for Acetone Removal
This study examines the performance of a new adsorbent, hexagonal nanostructured zeolite particles (HNZP) for acetone adsorption and compares the results with that of commercial mobil synthetic zeolite-5 (ZSM-5) type zeolite. The HNZP is a pure siliceous adsorbent with different values of pore diameter and surface area being adjustable by the manufacturing condition. The results indicate that a slight increase in the average pore diameter (d) of HNZP from 2 to 2.5 nm leads to an increase in the acetone adsorption capacity, although its surface area is decreased, in which case (d = 2.5 nm) the adsorption capacity of fresh HNZP is better than that of ZSM-5 zeolite. Even for the fresh HNZP (d = 2 nm) of which the adsorption capacity is less than that of the ZSM-5 zeolite at relative humidity (RH) of 0%, its adsorption capacity is not deteriorated after repeated regeneration, but the adsorption capacity of regenerated ZSM-5 zeolite decays markedly. Thus, after only one regeneration, the adsorption capacity of HNZP (d = 2 nm) becomes better than that of the ZSM-5 zeolite. The decrease in the adsorption capacity of regenerated ZSM-5 zeolite might be because of its aluminum content that catalyzes the acetone into coke and, thus, blocks the adsorption sites. Furthermore, result on the moisture effect shows that because the pure siliceous HNZP was more hydrophobic than the ZSM-5 zeolite, the acetone adsorption efficiency of fresh HNZP (d = 2 nm) is better than that of ZSM-5 zeolite at RH = 50%.
Applying Hexagonal Nanostructured Zeolite Particles for Acetone Removal
Lin, Yu-Chih (Autor:in) / Bai, Hsunling (Autor:in) / Chang, Chung-Liang (Autor:in)
Journal of the Air & Waste Management Association ; 55 ; 834-840
01.06.2005
7 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Titanium Dioxide/Zeolite Catalytic Adsorbent for the Removal of NO and Acetone Vapors
Taylor & Francis Verlag | 2009
|Synthesis and characterization of iron oxide nanostructured particles in Na-Y zeolite matrix
British Library Online Contents | 2004
|Nanostructured hexagonal cobalt oxide plates and their electrochemical properties
British Library Online Contents | 2016
|Reactions of (+)-a-Fenchene and (-)-Camphene with Acetone and Benzaldehyde over b-Zeolite
British Library Online Contents | 2002
|Experimental Evaluation of a Biofiltration Unit for Removal of Acetone
British Library Conference Proceedings | 1992
|