Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Harvesting equipment to reduce particulate matter emissions from almond harvest
Almond harvest accounts for an estimated 12 Gg of PM10 emissions in California each harvest season. Emissions from three new, “low-dust” almond harvesters (Exact Harvest Systems E4000; Flory Industries 8550; Weiss-McNair 9800 California Special) and one exhaust abatement device (Joe DiAnna, Clean Air Concept) were compared to those from a conventional harvester operating in the same orchard. Emissions of TSP and PM10 trended lower for all new harvesters and were significantly lower for most harvesters (α < 0.10). Significant reductions in PM2.5 emissions were observed from two harvesters as well. Fractionation analysis was not conducted on nut samples collected in the second year of the project, but differences observed in the composition of material that would be delivered to the huller between the Exact E4000 and conventional harvesters were functionally insignificant. The results of these tests imply that new harvest technologies are able to reduce PM10 emissions from one of the largest sources in the San Joaquin Valley (SJV) of California without affecting product quality. As such, use of these new harvesters should be considered a conservation measure that would help the SJV Air Pollution Control District (SJVAPCD) meet the requirements of their PM10 maintenance plan.
The results of this research indicate that new harvesting technologies have the potential to substantially reduce PM emissions from almond harvest operations over traditional harvester designs without negatively affecting product quality. As such, use of these new harvesters could aid the SJVAPCD in maintaining its attainment status for PM10 and should be considered as candidate conservation management practices for producers.
Harvesting equipment to reduce particulate matter emissions from almond harvest
Almond harvest accounts for an estimated 12 Gg of PM10 emissions in California each harvest season. Emissions from three new, “low-dust” almond harvesters (Exact Harvest Systems E4000; Flory Industries 8550; Weiss-McNair 9800 California Special) and one exhaust abatement device (Joe DiAnna, Clean Air Concept) were compared to those from a conventional harvester operating in the same orchard. Emissions of TSP and PM10 trended lower for all new harvesters and were significantly lower for most harvesters (α < 0.10). Significant reductions in PM2.5 emissions were observed from two harvesters as well. Fractionation analysis was not conducted on nut samples collected in the second year of the project, but differences observed in the composition of material that would be delivered to the huller between the Exact E4000 and conventional harvesters were functionally insignificant. The results of these tests imply that new harvest technologies are able to reduce PM10 emissions from one of the largest sources in the San Joaquin Valley (SJV) of California without affecting product quality. As such, use of these new harvesters should be considered a conservation measure that would help the SJV Air Pollution Control District (SJVAPCD) meet the requirements of their PM10 maintenance plan.
The results of this research indicate that new harvesting technologies have the potential to substantially reduce PM emissions from almond harvest operations over traditional harvester designs without negatively affecting product quality. As such, use of these new harvesters could aid the SJVAPCD in maintaining its attainment status for PM10 and should be considered as candidate conservation management practices for producers.
Harvesting equipment to reduce particulate matter emissions from almond harvest
Faulkner, William B. (Autor:in)
Journal of the Air & Waste Management Association ; 63 ; 70-79
01.01.2013
10 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Evaluation of Particulate Matter Abatement Strategies for Almond Harvest
Taylor & Francis Verlag | 2011
|Particulate Matter Emission Factors for Almond Harvest as a Function of Harvester Speed
Taylor & Francis Verlag | 2009
|Particulate matter emission factors using low-dust harvesters for almond nut-picking operations
Taylor & Francis Verlag | 2019
|Particulate Matter Emissions from Roads in Birminham
NTIS | 2004
|Trends in primary particulate matter emissions from Canadian agriculture
Taylor & Francis Verlag | 2012
|