Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Numerical Modeling and Assessment of the Ebe Schooner-Brig
The Ebe schooner-brig was built in 1921 and sailed the Mediterranean Sea for almost 40 years before being dissected into 90 parts to be transported to Milan (Italy). There, the schooner was reassembled, and the naval pavilion of the National Museum of Science and Technology was built around the ship. After 45 years in the museum, the ship presents significant deformations of both the deck and the keel, particularly in correspondence with the external supports. Despite several interventions in the past and a recent restoration, the deformation phenomenon is still worrying, and the real cause has yet to be understood. Experts have already advanced some hypotheses, often in opposition to one another; unfortunately, a continuous monitoring of the ship deformation has not been installed. In the present study, the schooner structure is modeled with the commercial finite element code Diana, considering a two-dimensional model of the ship section and a three-dimensional model of the whole schooner, accounting for different levels of details and discretization. The results obtained allow for a deeper understanding of the stress-strain field in the schooner, providing a first safety assessment and useful hints for the design of the monitoring and future interventions.
Numerical Modeling and Assessment of the Ebe Schooner-Brig
The Ebe schooner-brig was built in 1921 and sailed the Mediterranean Sea for almost 40 years before being dissected into 90 parts to be transported to Milan (Italy). There, the schooner was reassembled, and the naval pavilion of the National Museum of Science and Technology was built around the ship. After 45 years in the museum, the ship presents significant deformations of both the deck and the keel, particularly in correspondence with the external supports. Despite several interventions in the past and a recent restoration, the deformation phenomenon is still worrying, and the real cause has yet to be understood. Experts have already advanced some hypotheses, often in opposition to one another; unfortunately, a continuous monitoring of the ship deformation has not been installed. In the present study, the schooner structure is modeled with the commercial finite element code Diana, considering a two-dimensional model of the ship section and a three-dimensional model of the whole schooner, accounting for different levels of details and discretization. The results obtained allow for a deeper understanding of the stress-strain field in the schooner, providing a first safety assessment and useful hints for the design of the monitoring and future interventions.
Numerical Modeling and Assessment of the Ebe Schooner-Brig
Invernizzi, Stefano (Autor:in) / Bertolini-Cestari, Clara (Autor:in) / Fioravanti, Marco (Autor:in) / Chiabrera, Emanuele (Autor:in)
International Journal of Architectural Heritage ; 6 ; 453-477
01.09.2012
25 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Numerical Assessment of the Ebe Schooner-Brig
British Library Conference Proceedings | 2010
|Engineering Index Backfile | 1907
British Library Online Contents | 2004
|British Library Online Contents | 1997
|