Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Sensor/actuators placement on civil structures using a real coded genetic algorithm
The optimal design and placement of controllers at discrete locations on civil engineering structures is an important control problem that will have impact on the earthquake engineering community. Though algorithms exist for the placement of sensor/actuator systems on continuous structures, the placement of controllers on discrete civil structures is a very difficult problem. Because of the nature of civil structures, it is not possible to place sensors and actuators at any location in the structure. This usually creates a nonlinear constrained mixed integer problem that can be very difficult to solve. However, genetic algorithms have been found to be a powerful tool in solving such problems. The introduction of algorithms based on genetic search procedures should increase the rate of convergence and thus reduce the computational time for solving the difficult control problem. In this research task, a real coded genetic algorithm will be used to simultaneously place and design a control system for a civil engineering structure. The proposed method of simultaneously placing and designing sensor/actuators will be compared to a similar work that used a hybrid method. The hybrid method involves using a genetic algorithm to place the sensor/actuators, followed by a gradient-based method to determine the optimal controller gains. The proposed method is more convenient, in that both placement and design is done in the same algorithm, and as such it has a better convergence rate than the hybrid method.
Sensor/actuators placement on civil structures using a real coded genetic algorithm
The optimal design and placement of controllers at discrete locations on civil engineering structures is an important control problem that will have impact on the earthquake engineering community. Though algorithms exist for the placement of sensor/actuator systems on continuous structures, the placement of controllers on discrete civil structures is a very difficult problem. Because of the nature of civil structures, it is not possible to place sensors and actuators at any location in the structure. This usually creates a nonlinear constrained mixed integer problem that can be very difficult to solve. However, genetic algorithms have been found to be a powerful tool in solving such problems. The introduction of algorithms based on genetic search procedures should increase the rate of convergence and thus reduce the computational time for solving the difficult control problem. In this research task, a real coded genetic algorithm will be used to simultaneously place and design a control system for a civil engineering structure. The proposed method of simultaneously placing and designing sensor/actuators will be compared to a similar work that used a hybrid method. The hybrid method involves using a genetic algorithm to place the sensor/actuators, followed by a gradient-based method to determine the optimal controller gains. The proposed method is more convenient, in that both placement and design is done in the same algorithm, and as such it has a better convergence rate than the hybrid method.
Sensor/actuators placement on civil structures using a real coded genetic algorithm
Richardson, A. (Autor:in) / Abdullah, M.M. (Autor:in)
2002
12 Seiten, 15 Quellen
Aufsatz (Konferenz)
Englisch
Placement of sensors-actuators on civil structures using genetic algorithms
Online Contents | 2001
|Diagnosing Crack of RC Structure Using Real-Coded Genetic Algorithm
British Library Conference Proceedings | 2006
|Integrated Device Placement and Control Design in Civil Structures Using Genetic Algorithms
British Library Online Contents | 2005
|British Library Online Contents | 2015
|