Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Early-age autogenous effects in internally cured concrete and mortar
One strategy for achieving excellent long-term performance of concrete bridge decks is to combine low permeability with minimal early-age cracking. Low permeability can be achieved through the use of concretes with low water-cement ratios; however, topical curing techniques are usually insufficient to maximize hydration and minimize autogenous shrinkage effects. This autogenous shrinkage causes stresses in restrained concrete, which can lead to deleterious early-age cracking. Curing effectiveness can be enhanced through the implementation of prewetted lightweight fine aggregates. Internal curing is provided as the aggregate water gradually desorbs into the surrounding paste. A study of the early-age behavior of internally cured concrete is described in this paper. Internal curing was provided by means of expanded shale, clay, and slate lightweight fine aggregates. Ten mixtures with water-cement ratios of 0.42, 0.36, and 0.30 were investigated. Compressive and tensile strengths of the internally cured concretes were similar to or slightly greater than the strengths of their non-internally cured counterparts, and concrete stiffness decreased as expected in the internally cured mixtures. Autogenous shrinkage strains and stresses were found to increase as the water-cement ratio decreases. However, the autogenous effects were reduced or eliminated in the internally cured concretes.
Early-age autogenous effects in internally cured concrete and mortar
One strategy for achieving excellent long-term performance of concrete bridge decks is to combine low permeability with minimal early-age cracking. Low permeability can be achieved through the use of concretes with low water-cement ratios; however, topical curing techniques are usually insufficient to maximize hydration and minimize autogenous shrinkage effects. This autogenous shrinkage causes stresses in restrained concrete, which can lead to deleterious early-age cracking. Curing effectiveness can be enhanced through the implementation of prewetted lightweight fine aggregates. Internal curing is provided as the aggregate water gradually desorbs into the surrounding paste. A study of the early-age behavior of internally cured concrete is described in this paper. Internal curing was provided by means of expanded shale, clay, and slate lightweight fine aggregates. Ten mixtures with water-cement ratios of 0.42, 0.36, and 0.30 were investigated. Compressive and tensile strengths of the internally cured concretes were similar to or slightly greater than the strengths of their non-internally cured counterparts, and concrete stiffness decreased as expected in the internally cured mixtures. Autogenous shrinkage strains and stresses were found to increase as the water-cement ratio decreases. However, the autogenous effects were reduced or eliminated in the internally cured concretes.
Early-age autogenous effects in internally cured concrete and mortar
Autogene Früheffekte bei intern erhärtetem Beton und Mörtel
Byard, Benjamin E. (Autor:in) / Schindler, Anton K. (Autor:in) / Barnes, Robert W. (Autor:in)
2011
18 Seiten, 12 Bilder, 4 Tabellen, 29 Quellen
Aufsatz (Konferenz)
Englisch
Early-Age Autogenous Effects in Internally Cured Concrete and Mortar
British Library Conference Proceedings | 2013
|Autogenous Shrinkage of Early-Age Internally Cured Concrete
Springer Verlag | 2023
|British Library Online Contents | 2012
|