Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Seismic enhancement of multi-span continuous bridges subjected to three-directional excitations
Considering the seismic ground motions as the excitations in only two principal horizontal directions of the bridges and ignoring the third vertical direction is a disregard for the seismic conditions of the region and the bridge distance from epicenter. Numerous cases of substantial damages have been reported among the bridges tremendously suffered from being exposed to the simultaneous three-directional seismic ground motions. Besides the significant compression and tension damages in the columns due to the presence of vertical excitation, it could lead to unexpected shear and flexural failures in the columns and other components as well. Because the axial force variation in the columns due to three-directional excitations, could affect the demands and capacities of the bridge’s components. With respect to this issue, several studies on the bridge damages during the earthquakes have urged researchers to offer efficient methods for bridges handling of the three-directional seismic excitations. Thus, this paper presents and evaluates a superelastic based system for designing as well as retrofitting the multi-span continuous (MSC) bridges that can cope with two- and three-directional seismic excitations. Efficiency evaluation of the proposed system is conducted through various nonlinear time history analyses on a three-dimensional model of a detailed MSC bridge using a suite of developed ground motions for the bridge region. Also, all the analyses are fulfilled based on variation of one influential design characteristic of the proposed system in order to achieve the optimal design. Several pertinent assessment parameters are used during the evaluation of the proposed system. Finally, the efficiency of the new system subjected to the vertical and horizontal seismic excitations is confirmed according to reduction of the bridge responses and improvement in nonlinear performance of the columns in comparison with the as-built bridge results.
Seismic enhancement of multi-span continuous bridges subjected to three-directional excitations
Considering the seismic ground motions as the excitations in only two principal horizontal directions of the bridges and ignoring the third vertical direction is a disregard for the seismic conditions of the region and the bridge distance from epicenter. Numerous cases of substantial damages have been reported among the bridges tremendously suffered from being exposed to the simultaneous three-directional seismic ground motions. Besides the significant compression and tension damages in the columns due to the presence of vertical excitation, it could lead to unexpected shear and flexural failures in the columns and other components as well. Because the axial force variation in the columns due to three-directional excitations, could affect the demands and capacities of the bridge’s components. With respect to this issue, several studies on the bridge damages during the earthquakes have urged researchers to offer efficient methods for bridges handling of the three-directional seismic excitations. Thus, this paper presents and evaluates a superelastic based system for designing as well as retrofitting the multi-span continuous (MSC) bridges that can cope with two- and three-directional seismic excitations. Efficiency evaluation of the proposed system is conducted through various nonlinear time history analyses on a three-dimensional model of a detailed MSC bridge using a suite of developed ground motions for the bridge region. Also, all the analyses are fulfilled based on variation of one influential design characteristic of the proposed system in order to achieve the optimal design. Several pertinent assessment parameters are used during the evaluation of the proposed system. Finally, the efficiency of the new system subjected to the vertical and horizontal seismic excitations is confirmed according to reduction of the bridge responses and improvement in nonlinear performance of the columns in comparison with the as-built bridge results.
Seismic enhancement of multi-span continuous bridges subjected to three-directional excitations
Aryan, H. (Autor:in) / Ghassemieh, M. (Autor:in)
Smart Materials and Structures ; 24 ; 045030/1-045030/13
2015
13 Seiten, 23 Quellen
Aufsatz (Zeitschrift)
Englisch
Seismic enhancement of multi-span continuous bridges subjected to three-directional excitations
British Library Online Contents | 2015
|British Library Conference Proceedings | 2005
|British Library Online Contents | 2003
|Frequency-Domain Analysis of Long-Span Bridges Subjected to Nonuniform Seismic Motions
Online Contents | 2001
|British Library Online Contents | 2017
|