Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Performance on Steel Fiber Reinforced Self-Stressing Concrete
In this paper a new sort of high performance concrete is introduced which combines most advantages of prestressed concrete and steel fiber concrete, named steel fiber reinforced self-stressing concrete(SFFRSSC for short). Self-stressing concrete is actually a kind of expansive concrete which self-stresses, namely pre-compressive stresses, are induced by dint of some restrictions generally provided by steel bars to concrete expansion after hydration of expansive cement. As a result of chemical reaction, concrete archived prestresses by itself different from mechanical prestressed concrete, so called self-stressing concrete. By distributing short-cut steel fibers into self-stressing concrete at random, self-stresses are generated in concrete under combined restriction of steel bars as well as steel fibers. Thank to the pre-stresses tensile strength of concrete are significantly increased as well as cracking strength. In addition, on the one hand, expansive deformation of SFFRSSC can compensate the shrinkage of concrete to decrease non-loaded cracks resulting from shrinkage, and even when cracking, the steel fibers play an important role in resistance to crack development. On the other hand, self-stressing concrete can avoid the troubles of construction compared with conventional mechanical prestressed concrete. Therefore, above-mentioned advantages of SFFRSSC over ordinary concrete imply a better prospect in using SFFRSSC in civil engineering. For purpose of understanding the properties of SFFRSSC, in this paper some researches were carried out to investigate the special expansive behaviors with ages and tensile strength. The test results indicated that at early age the expansion of SFFRSSC developed rapidly but 14 day the 90% of overall expansive deformation basically fulfilled and subsequently expansion kept stable. Axial tensile test result showed that tensile strength were improved 2-3 times for self-stressing concrete specimens restrained by steel bars as well as steel fibers.
Performance on Steel Fiber Reinforced Self-Stressing Concrete
In this paper a new sort of high performance concrete is introduced which combines most advantages of prestressed concrete and steel fiber concrete, named steel fiber reinforced self-stressing concrete(SFFRSSC for short). Self-stressing concrete is actually a kind of expansive concrete which self-stresses, namely pre-compressive stresses, are induced by dint of some restrictions generally provided by steel bars to concrete expansion after hydration of expansive cement. As a result of chemical reaction, concrete archived prestresses by itself different from mechanical prestressed concrete, so called self-stressing concrete. By distributing short-cut steel fibers into self-stressing concrete at random, self-stresses are generated in concrete under combined restriction of steel bars as well as steel fibers. Thank to the pre-stresses tensile strength of concrete are significantly increased as well as cracking strength. In addition, on the one hand, expansive deformation of SFFRSSC can compensate the shrinkage of concrete to decrease non-loaded cracks resulting from shrinkage, and even when cracking, the steel fibers play an important role in resistance to crack development. On the other hand, self-stressing concrete can avoid the troubles of construction compared with conventional mechanical prestressed concrete. Therefore, above-mentioned advantages of SFFRSSC over ordinary concrete imply a better prospect in using SFFRSSC in civil engineering. For purpose of understanding the properties of SFFRSSC, in this paper some researches were carried out to investigate the special expansive behaviors with ages and tensile strength. The test results indicated that at early age the expansion of SFFRSSC developed rapidly but 14 day the 90% of overall expansive deformation basically fulfilled and subsequently expansion kept stable. Axial tensile test result showed that tensile strength were improved 2-3 times for self-stressing concrete specimens restrained by steel bars as well as steel fibers.
Performance on Steel Fiber Reinforced Self-Stressing Concrete
Key Engineering Materials ; 400-402 ; 427-432
21.10.2008
6 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Performance on Steel Fiber Reinforced Self-Stressing Concrete
British Library Online Contents | 2009
|Performance on Steel Fiber Reinforced Self-Stressing Concrete
British Library Conference Proceedings | 2009
|Self-Expansive Behavior of Steel Fiber Reinforced Self-Stressing Concrete
British Library Conference Proceedings | 2011
|Self-Expansive Behavior of Steel Fiber Reinforced Self-Stressing Concrete
Trans Tech Publications | 2010
|Study on Restrained Expansive Deformation of Steel Fiber Reinforced Self-Stressing Concrete
Trans Tech Publications | 2008
|