Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Research on Dynamic Response of Underground Circular Lining Tunnel under the Action of P Waves
Dynamic stress concentration of tunnels and underground engineers under the action of earthquake waves is a fundamental problem. Selecting circular lining tunnel in semi-infinite space under the action of P waves as prototype, based on the assumption of large circular arc, a set of dynamic stress series solution in semi-infinite space and lining is deduced by wave function expansion method. With specific examples, the influences on shallow-buried depth rock tunnels of different factors which include incident frequency, incident angle, buried depth, rock conditions and lining rigidity are studied. The results show that low-frequency P waves are more dangerous to tunnel lining than high-frequency P waves; When P waves is incident from the bottom of the vertical tunnel or small angle (θα = 0° ~ 30°), the damage of tunnel lining is more seriously; Under the hard rock conditions, when the tunnel buried depth reaches more than 100m, the thickness of overlying rock is not a major factor effecting the dynamic stress and earthquake damages of tunnel structure lining; Under the soft surrounding rock condition, the value of dynamic stress concentration coefficient of lining is still up to 6.5 when the buried depth of tunnels is more than 100m, and what’s more the tunnel lining may still be caused seriously earthquake damage; With the increasing of lining stiffness, the dynamic stress concentration of lining is more uneven, and the value span is greater; so under the premise of meeting bearing capacity and deformation of lining, soft lining is recommended to adapt in the tunnel structure to decrease earthquake damage of tunnels.
Research on Dynamic Response of Underground Circular Lining Tunnel under the Action of P Waves
Dynamic stress concentration of tunnels and underground engineers under the action of earthquake waves is a fundamental problem. Selecting circular lining tunnel in semi-infinite space under the action of P waves as prototype, based on the assumption of large circular arc, a set of dynamic stress series solution in semi-infinite space and lining is deduced by wave function expansion method. With specific examples, the influences on shallow-buried depth rock tunnels of different factors which include incident frequency, incident angle, buried depth, rock conditions and lining rigidity are studied. The results show that low-frequency P waves are more dangerous to tunnel lining than high-frequency P waves; When P waves is incident from the bottom of the vertical tunnel or small angle (θα = 0° ~ 30°), the damage of tunnel lining is more seriously; Under the hard rock conditions, when the tunnel buried depth reaches more than 100m, the thickness of overlying rock is not a major factor effecting the dynamic stress and earthquake damages of tunnel structure lining; Under the soft surrounding rock condition, the value of dynamic stress concentration coefficient of lining is still up to 6.5 when the buried depth of tunnels is more than 100m, and what’s more the tunnel lining may still be caused seriously earthquake damage; With the increasing of lining stiffness, the dynamic stress concentration of lining is more uneven, and the value span is greater; so under the premise of meeting bearing capacity and deformation of lining, soft lining is recommended to adapt in the tunnel structure to decrease earthquake damage of tunnels.
Research on Dynamic Response of Underground Circular Lining Tunnel under the Action of P Waves
Applied Mechanics and Materials ; 99-100 ; 181-189
08.09.2011
9 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Research on Dynamic Response of Underground Circular Lining Tunnel under the Action of P Waves
British Library Conference Proceedings | 2011
|Dynamical Response of Circular Tunnel with Steel Lining under the Action of Blasting Vibration
British Library Conference Proceedings | 2011
|Study on Dynamic Characteristics of Circular Tunnel Concrete Lining
British Library Conference Proceedings | 2013
|