Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Experimental micro/nanoscale thermal transport
"This is the first book to focus on thermal characterization of the thermophysical properties of micro/nanoscale materials"--
"This book covers the new technologies on micro/nanoscale thermal characterization developed in the Micro/Nanoscale Thermal Science Laboratory led by Dr. Xinwei Wang. Five new non-contact and non-destructive technologies are introduced: optical heating and electrical sensing technique, transient electro-thermal technique, transient photo-electro-thermal technique, pulsed laser-assisted thermal relaxation technique, and steady-state electro-Raman-thermal technique. These techniques feature significantly improved ease of implementation, super signal-to-noise ratio, and have the capacity of measuring the thermal conductivity/diffusivity of various one-dimensional structures from dielectric, semiconductive, to metallic materials"--
Frontmatter -- Introduction -- Thermal Characterization in Frequency Domain -- Transient Technologies in the Time Domain -- Steady-State Thermal Characterization -- Steady-State Optical-Based Thermal Probing and Characterization -- Index.
Machine generated contents note:1.Introduction --1.1.Unique Feature of Thermal Transport in Nanoscale and Nanostructured Materials --1.1.1.Thermal Transport Constrained by Material Size --1.1.2.Thermal Transport Constrained by Time --1.1.3.Thermal Transport Constrained by the Size of Physical Process --1.2.Molecular Dynamics Simulation of Thermal Transport at Micro/Nanoscales --1.2.1.Equilibrium MD Prediction of Thermal Conductivity --1.2.2.Nonequilibrium MD Study of Thermal Transport --1.2.3.MD Study of Thermal Transport Constrained by Time --1.3.Boltzmann Transportation Equation for Thermal Transport Study --1.4.Direct Energy Carrier Relaxation Tracking (DECRT) --1.5.Challenges in Characterizing Thermal Transport at Micro/Nanoscales --References --2.Thermal Characterization In Frequency Domain --2.1.Frequency Domain Photoacoustic (PA) Technique --2.1.1.Physical Model --2.1.2.Experimental Details --2.1.3.PA Measurement of Films and Bulk Materials --2.1.4.Uncertainty of the PA Measurement --2.2.Frequency Domain Photothermal Radiation (PTR) Technique --2.2.1.Experimental Details of the PTR Technique --2.2.2.PTR Measurement of Micrometer-Thick Films --2.2.3.PTR with Internal Heating of Desired Locations --2.3.Three-Omega Technique --2.3.1.Physical Model of the 3ω Technique for One-Dimensional Structures --2.3.2.Experimental Details --2.3.3.Calibration of the Experiment --2.3.4.Measurement of Micrometer-Thick Wires --2.3.5.Effect of Radiation on Measurement Result --2.4.Optical Heating Electrical Thermal Sensing (OHETS) Technique --2.4.1.Experimental Principle and Physical Model --2.4.2.Effect of Nonuniform Distribution of Laser Beam --2.4.3.Experimental Details and Calibration --2.4.4.Measurement of Electrically Conductive Wires --2.4.5.Measurement of Nonconductive Wires --2.4.6.Effect of Au Coating on Measurement --2.4.7.Temperature Rise in the OHETS Experiment --2.5.Comparison Among the Techniques --References --3.Transient Technologies In The Time Domain --3.1.Transient Photo-Electro-Thermal (TPET) Technique --3.1.1.Experimental Principles --3.1.2.Physical Model Development --3.1.3.Effect of Nonuniform Distribution and Finite Rising Time of the Laser Beam --3.1.4.Experimental Setup --3.1.5.Technique Validation --3.1.6.Thermal Characterization of SWCNT Bundles and Cloth Fibers --3.2.Transient Electrothermal (TET) Technique --3.2.1.Physical Principles of the TET Technique --3.2.2.Methods for Data Analysis to Determine the Thermal Diffusivity --3.2.3.Effect of Nonconstant Electrical Heating --3.2.4.Experimental Details --3.2.5.Technique Validation --3.2.6.Measurement of SWCNT Bundles --3.2.7.Measurement of Polyester Fibers --3.2.8.Measurement of Micro/Submicroscale Polyacrylonitrile Wires --3.3.Pulsed Laser-Assisted Thermal Relaxation Technique --3.3.1.Experimental Principles --3.3.2.Physical Model for the PLTR Technique --3.3.3.Methods to Determine the Thermal Diffusivity --3.3.4.Experimental Setup and Technique Validation --3.3.5.Measurement of Multiwalled Carbon Nanotube (MWCNT) Bundles --3.3.6.Measurement of Individual Microscale Carbon Fibers --3.4.Super Channeling Effect for Thermal Transport in Micro/Nanoscale Wires --3.5.Multidimensional Thermal Characterization --3.5.1.Sample Preparation --3.5.2.Thermal Characterization Design --3.5.3.Thermal Transport Along the Axial Direction of Amorphous TiO2 Nanotubes --3.5.4.Thermal Transport in the Cross-Tube Direction of Amorphous TiO2 Nanotubes --3.5.5.Evaluation of Thermal Contact Resistance Between Amorphous TiO2 Nanotubes --3.5.6.Anisotropic Thermal Transport in Anatase TiO2 Nanotubes --3.6.Remarks on the Transient Technologies --References --4.Steady-State Thermal Characterization --4.1.Generalized Electrothermal Characterization --4.1.1.Generalized Electrothermal (GET) Technique: Combined Transient and Steady States --4.1.2.Experimental Setup --4.1.3.Experimental Details --4.1.4.Measurement of MWCNT Bundle with L = 3.33 mm and D = 94.5 μm --4.1.5.Measurement of MWCNT Bundle with L = 2.90 mm and D = 233 μm --4.1.6.Analysis of the Tube-to-Tube Thermal Contact Resistance --4.1.7.Effect of Radiation Heat Loss --4.2.Get Measurement of Porous Freestanding Thin Films Composed of Anatase TiO2 Nanofibers --4.2.1.Sample Preparation --4.2.2.R-T Calibration --4.2.3.TET Measurement of Thermal Conductivity and Thermal Diffusivity --4.2.4.Thermophysical Properties of Samples with Different Dimensions --4.2.5.Intrinsic Thermal Conductivity of TiO2 Nanofibers --4.2.6.Uncertainty Analysis --4.3.Measurement of Micrometer-Thick Polymer Films --4.3.1.Sample Preparation --4.3.2.Electrical Resistance (R)-Temperature Coefficient Calibration --4.3.3.Measurement of Thermal Conductivity and Thermal Diffusivity --4.3.4.Thermophysical Properties of P3HT Thin Films with Different Dimensions --4.4.Steady-State Electro-Raman Thermal (SERT) Technique --4.4.1.Experimental Principle and Physical Model Development --4.4.2.Experimental Setup for Measuring CNT Buckypaper --4.4.3.Calibration Experiment --4.4.4.Thermal Characterization of MWCNT Buckypapers --4.4.5.Thermal Conductivity Analysis --4.4.6.Uncertainty Induced by Location of Laser Focal Point --4.4.7.Effect of Thermal and Electrical Contact Resistances and Thermal Transport in Electrodes --4.5.SERT Measurement of MWCNT Bundles --4.6.Extension of the Steady-State Techniques --References --5.Steady-State Optical-Based Thermal Probing And Characterization --5.1.Sub-10-nm Temperature Measurement --5.1.1.Introduction to Sub-10-nm Near-Field Focusing --5.1.2.Experimental Design and Conduction --5.1.3.Measurement Results --5.1.4.Physics Behind Near-Field Focusing and Thermal Transport --5.2.Thermal Probing at nm/SUB-nm Resolution for Studying Interface Thermal Transport --5.2.1.Introduction --5.2.2.Experimental Method --5.2.3.Experimental Results --5.2.4.Comparison with Molecular Dynamics Simulation --5.2.5.Discussion --5.3.Optical Heating and Thermal Sensing using Raman Spectrometer --5.3.1.Thermal Conductivity Measurement of Suspended Filmlike Materials --5.3.2.Thermal Conductivity Measurement of Suspended Nanowires --5.4.Bilayer Sensor-Based Technique --5.5.Further Consideration for Micro/Nanoscale Thermal Sensing and Characterization --5.5.1.Electrothermal Sensing in Thermal Characterization of Coatings/Films --5.5.2.Transient Photo-Heating and Thermal Sensing of Wirelike Samples --References.
Experimental micro/nanoscale thermal transport
"This is the first book to focus on thermal characterization of the thermophysical properties of micro/nanoscale materials"--
"This book covers the new technologies on micro/nanoscale thermal characterization developed in the Micro/Nanoscale Thermal Science Laboratory led by Dr. Xinwei Wang. Five new non-contact and non-destructive technologies are introduced: optical heating and electrical sensing technique, transient electro-thermal technique, transient photo-electro-thermal technique, pulsed laser-assisted thermal relaxation technique, and steady-state electro-Raman-thermal technique. These techniques feature significantly improved ease of implementation, super signal-to-noise ratio, and have the capacity of measuring the thermal conductivity/diffusivity of various one-dimensional structures from dielectric, semiconductive, to metallic materials"--
Frontmatter -- Introduction -- Thermal Characterization in Frequency Domain -- Transient Technologies in the Time Domain -- Steady-State Thermal Characterization -- Steady-State Optical-Based Thermal Probing and Characterization -- Index.
Machine generated contents note:1.Introduction --1.1.Unique Feature of Thermal Transport in Nanoscale and Nanostructured Materials --1.1.1.Thermal Transport Constrained by Material Size --1.1.2.Thermal Transport Constrained by Time --1.1.3.Thermal Transport Constrained by the Size of Physical Process --1.2.Molecular Dynamics Simulation of Thermal Transport at Micro/Nanoscales --1.2.1.Equilibrium MD Prediction of Thermal Conductivity --1.2.2.Nonequilibrium MD Study of Thermal Transport --1.2.3.MD Study of Thermal Transport Constrained by Time --1.3.Boltzmann Transportation Equation for Thermal Transport Study --1.4.Direct Energy Carrier Relaxation Tracking (DECRT) --1.5.Challenges in Characterizing Thermal Transport at Micro/Nanoscales --References --2.Thermal Characterization In Frequency Domain --2.1.Frequency Domain Photoacoustic (PA) Technique --2.1.1.Physical Model --2.1.2.Experimental Details --2.1.3.PA Measurement of Films and Bulk Materials --2.1.4.Uncertainty of the PA Measurement --2.2.Frequency Domain Photothermal Radiation (PTR) Technique --2.2.1.Experimental Details of the PTR Technique --2.2.2.PTR Measurement of Micrometer-Thick Films --2.2.3.PTR with Internal Heating of Desired Locations --2.3.Three-Omega Technique --2.3.1.Physical Model of the 3ω Technique for One-Dimensional Structures --2.3.2.Experimental Details --2.3.3.Calibration of the Experiment --2.3.4.Measurement of Micrometer-Thick Wires --2.3.5.Effect of Radiation on Measurement Result --2.4.Optical Heating Electrical Thermal Sensing (OHETS) Technique --2.4.1.Experimental Principle and Physical Model --2.4.2.Effect of Nonuniform Distribution of Laser Beam --2.4.3.Experimental Details and Calibration --2.4.4.Measurement of Electrically Conductive Wires --2.4.5.Measurement of Nonconductive Wires --2.4.6.Effect of Au Coating on Measurement --2.4.7.Temperature Rise in the OHETS Experiment --2.5.Comparison Among the Techniques --References --3.Transient Technologies In The Time Domain --3.1.Transient Photo-Electro-Thermal (TPET) Technique --3.1.1.Experimental Principles --3.1.2.Physical Model Development --3.1.3.Effect of Nonuniform Distribution and Finite Rising Time of the Laser Beam --3.1.4.Experimental Setup --3.1.5.Technique Validation --3.1.6.Thermal Characterization of SWCNT Bundles and Cloth Fibers --3.2.Transient Electrothermal (TET) Technique --3.2.1.Physical Principles of the TET Technique --3.2.2.Methods for Data Analysis to Determine the Thermal Diffusivity --3.2.3.Effect of Nonconstant Electrical Heating --3.2.4.Experimental Details --3.2.5.Technique Validation --3.2.6.Measurement of SWCNT Bundles --3.2.7.Measurement of Polyester Fibers --3.2.8.Measurement of Micro/Submicroscale Polyacrylonitrile Wires --3.3.Pulsed Laser-Assisted Thermal Relaxation Technique --3.3.1.Experimental Principles --3.3.2.Physical Model for the PLTR Technique --3.3.3.Methods to Determine the Thermal Diffusivity --3.3.4.Experimental Setup and Technique Validation --3.3.5.Measurement of Multiwalled Carbon Nanotube (MWCNT) Bundles --3.3.6.Measurement of Individual Microscale Carbon Fibers --3.4.Super Channeling Effect for Thermal Transport in Micro/Nanoscale Wires --3.5.Multidimensional Thermal Characterization --3.5.1.Sample Preparation --3.5.2.Thermal Characterization Design --3.5.3.Thermal Transport Along the Axial Direction of Amorphous TiO2 Nanotubes --3.5.4.Thermal Transport in the Cross-Tube Direction of Amorphous TiO2 Nanotubes --3.5.5.Evaluation of Thermal Contact Resistance Between Amorphous TiO2 Nanotubes --3.5.6.Anisotropic Thermal Transport in Anatase TiO2 Nanotubes --3.6.Remarks on the Transient Technologies --References --4.Steady-State Thermal Characterization --4.1.Generalized Electrothermal Characterization --4.1.1.Generalized Electrothermal (GET) Technique: Combined Transient and Steady States --4.1.2.Experimental Setup --4.1.3.Experimental Details --4.1.4.Measurement of MWCNT Bundle with L = 3.33 mm and D = 94.5 μm --4.1.5.Measurement of MWCNT Bundle with L = 2.90 mm and D = 233 μm --4.1.6.Analysis of the Tube-to-Tube Thermal Contact Resistance --4.1.7.Effect of Radiation Heat Loss --4.2.Get Measurement of Porous Freestanding Thin Films Composed of Anatase TiO2 Nanofibers --4.2.1.Sample Preparation --4.2.2.R-T Calibration --4.2.3.TET Measurement of Thermal Conductivity and Thermal Diffusivity --4.2.4.Thermophysical Properties of Samples with Different Dimensions --4.2.5.Intrinsic Thermal Conductivity of TiO2 Nanofibers --4.2.6.Uncertainty Analysis --4.3.Measurement of Micrometer-Thick Polymer Films --4.3.1.Sample Preparation --4.3.2.Electrical Resistance (R)-Temperature Coefficient Calibration --4.3.3.Measurement of Thermal Conductivity and Thermal Diffusivity --4.3.4.Thermophysical Properties of P3HT Thin Films with Different Dimensions --4.4.Steady-State Electro-Raman Thermal (SERT) Technique --4.4.1.Experimental Principle and Physical Model Development --4.4.2.Experimental Setup for Measuring CNT Buckypaper --4.4.3.Calibration Experiment --4.4.4.Thermal Characterization of MWCNT Buckypapers --4.4.5.Thermal Conductivity Analysis --4.4.6.Uncertainty Induced by Location of Laser Focal Point --4.4.7.Effect of Thermal and Electrical Contact Resistances and Thermal Transport in Electrodes --4.5.SERT Measurement of MWCNT Bundles --4.6.Extension of the Steady-State Techniques --References --5.Steady-State Optical-Based Thermal Probing And Characterization --5.1.Sub-10-nm Temperature Measurement --5.1.1.Introduction to Sub-10-nm Near-Field Focusing --5.1.2.Experimental Design and Conduction --5.1.3.Measurement Results --5.1.4.Physics Behind Near-Field Focusing and Thermal Transport --5.2.Thermal Probing at nm/SUB-nm Resolution for Studying Interface Thermal Transport --5.2.1.Introduction --5.2.2.Experimental Method --5.2.3.Experimental Results --5.2.4.Comparison with Molecular Dynamics Simulation --5.2.5.Discussion --5.3.Optical Heating and Thermal Sensing using Raman Spectrometer --5.3.1.Thermal Conductivity Measurement of Suspended Filmlike Materials --5.3.2.Thermal Conductivity Measurement of Suspended Nanowires --5.4.Bilayer Sensor-Based Technique --5.5.Further Consideration for Micro/Nanoscale Thermal Sensing and Characterization --5.5.1.Electrothermal Sensing in Thermal Characterization of Coatings/Films --5.5.2.Transient Photo-Heating and Thermal Sensing of Wirelike Samples --References.
Experimental micro/nanoscale thermal transport
Wang, Xinwei (Autor:in)
2012
1 Online-Ressource (xiii, 264 pages)
illustrations
Includes bibliographical references and index
Buch
Elektronische Ressource
Englisch
DDC:
620.1/1596
Transport phenomena in micro- and nanoscale functional materials
UB Braunschweig | 2021
|British Library Online Contents | 2008
|Nanoscale pores enable fast transport
British Library Online Contents | 2006
|Nanoscale transport on the tube
British Library Online Contents | 2004
|Nanoscale thermal transport aspects of heat-assisted magnetic recording devices and materials
British Library Online Contents | 2018
|