Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
An Ideal Molecular Construction Strategy for Ultra‐Narrow‐Band Deep‐Blue Emitters: Balancing Bathochromic‐Shift Emission, Spectral Narrowing, and Aggregation Suppression
AbstractNarrowband emissive multiple resonance (MR) emitters promise high efficiency and stability in deep‐blue organic light‐emitting diodes (OLEDs). However, the construction of ideal ultra‐narrow‐band deep‐blue MR emitters still faces formidable challenges, especially in balancing bathochromic‐shift emission, spectral narrowing, and aggregation suppression. Here, DICz is chosen, which possesses the smallest full‐width‐at‐half‐maximum (FWHM) in MR structures, as the core and solved the above issue by tuning its peripheral substitution sites. The 1‐substituted molecule Cz‐DICz is able to show a bright deep‐blue emission with a peak at 457 nm, an extremely small FWHM of 14 nm, and a CIE coordinate of (0.14, 0.08) in solution. The corresponding OLEDs exhibit high maximum external quantum efficiencies of 22.1%–25.6% and identical small FWHMs of 18 nm over the practical mass‐production concentration range (1–4 wt.%). To the best of the knowledge, 14 and 18 nm are currently the smallest FWHM values for deep‐blue MR emitters with similar emission maxima under photoluminescence and electroluminescence conditions, respectively. These discoveries will help drive the development of high‐performance narrowband deep‐blue emitters and bring about a revolution in OLED industry.
An Ideal Molecular Construction Strategy for Ultra‐Narrow‐Band Deep‐Blue Emitters: Balancing Bathochromic‐Shift Emission, Spectral Narrowing, and Aggregation Suppression
AbstractNarrowband emissive multiple resonance (MR) emitters promise high efficiency and stability in deep‐blue organic light‐emitting diodes (OLEDs). However, the construction of ideal ultra‐narrow‐band deep‐blue MR emitters still faces formidable challenges, especially in balancing bathochromic‐shift emission, spectral narrowing, and aggregation suppression. Here, DICz is chosen, which possesses the smallest full‐width‐at‐half‐maximum (FWHM) in MR structures, as the core and solved the above issue by tuning its peripheral substitution sites. The 1‐substituted molecule Cz‐DICz is able to show a bright deep‐blue emission with a peak at 457 nm, an extremely small FWHM of 14 nm, and a CIE coordinate of (0.14, 0.08) in solution. The corresponding OLEDs exhibit high maximum external quantum efficiencies of 22.1%–25.6% and identical small FWHMs of 18 nm over the practical mass‐production concentration range (1–4 wt.%). To the best of the knowledge, 14 and 18 nm are currently the smallest FWHM values for deep‐blue MR emitters with similar emission maxima under photoluminescence and electroluminescence conditions, respectively. These discoveries will help drive the development of high‐performance narrowband deep‐blue emitters and bring about a revolution in OLED industry.
An Ideal Molecular Construction Strategy for Ultra‐Narrow‐Band Deep‐Blue Emitters: Balancing Bathochromic‐Shift Emission, Spectral Narrowing, and Aggregation Suppression
Advanced Science
Luo, Xiaofeng (Autor:in) / Jin, Qian (Autor:in) / Du, Mingxu (Autor:in) / Wang, Dong (Autor:in) / Duan, Lian (Autor:in) / Zhang, Yuewei (Autor:in)
Advanced Science ; 11
01.03.2024
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Color Stable Deep Blue Multi‐Resonance Organic Emitters with Narrow Emission and High Efficiency
Wiley | 2023
|Ultra-deep narrow space construction protection device and construction method thereof
Europäisches Patentamt | 2023
|Narrowing the Phase Distribution of Quasi‐2D Perovskites for Stable Deep‐Blue Electroluminescence
Wiley | 2022
|