Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
QSARs for aromatic hydrocarbons at several trophic levels
10.1002/tox.20163.abs
Quantitative structure–activity relationships (QSARs) with aromatic hydrocarbons were obtained. Biological response was measured by acute toxicity of several aquatic trophic levels. The chemicals assayed were benzene, toluene, ethylbenzene, o‐xylene, m‐xylene, p‐xylene, isopropylbenzene, n‐propylbenzene, and butylbenzene. Acute toxicity tests were carried out with Scenedesmus quadricauda, as representative of primary producers; Daphnia spinulata, a zooplanctonic cladoceran; Hyalella curvispina, a benthic macroinvertebrate; and Bryconamericus iheringii, an omnivorous native fish. The EC50 or LC50 was calculated from analytical determinations of aromatic hydrocarbons. Nonlinear regression analysis between the logarithm of the octanol–water partition coefficient (log Kow) of each compounds and the toxicity end points was performed. QSARs were positively related to increases in log Kow at all trophic levels. Intertaxonomic differences were found in comparisons of algae with animals and of invertebrates with vertebrates. We observed that these differences were not significant with a log Kow higher than 3 for all organisms. Aromatic hydrocarbons with log Kow values of less than 3 showed different toxicity responses, with algae more resistant than fish and invertebrates. We concluded that this was a result of the narcotic mode of action related to liposolubility and the ability of the compound to reach its target site in the cell. The bioconcentration factor (BCF) achieved to start nonpolar narcosis fell almost 1 order of magnitude below the BCF expected from the log Kow. Predicted critical body residues for nonpolar narcosis ranged between 2 and 1 mM. © 2006 Wiley Periodicals, Inc. Environ Toxicol 21: 118–124, 2006.
QSARs for aromatic hydrocarbons at several trophic levels
10.1002/tox.20163.abs
Quantitative structure–activity relationships (QSARs) with aromatic hydrocarbons were obtained. Biological response was measured by acute toxicity of several aquatic trophic levels. The chemicals assayed were benzene, toluene, ethylbenzene, o‐xylene, m‐xylene, p‐xylene, isopropylbenzene, n‐propylbenzene, and butylbenzene. Acute toxicity tests were carried out with Scenedesmus quadricauda, as representative of primary producers; Daphnia spinulata, a zooplanctonic cladoceran; Hyalella curvispina, a benthic macroinvertebrate; and Bryconamericus iheringii, an omnivorous native fish. The EC50 or LC50 was calculated from analytical determinations of aromatic hydrocarbons. Nonlinear regression analysis between the logarithm of the octanol–water partition coefficient (log Kow) of each compounds and the toxicity end points was performed. QSARs were positively related to increases in log Kow at all trophic levels. Intertaxonomic differences were found in comparisons of algae with animals and of invertebrates with vertebrates. We observed that these differences were not significant with a log Kow higher than 3 for all organisms. Aromatic hydrocarbons with log Kow values of less than 3 showed different toxicity responses, with algae more resistant than fish and invertebrates. We concluded that this was a result of the narcotic mode of action related to liposolubility and the ability of the compound to reach its target site in the cell. The bioconcentration factor (BCF) achieved to start nonpolar narcosis fell almost 1 order of magnitude below the BCF expected from the log Kow. Predicted critical body residues for nonpolar narcosis ranged between 2 and 1 mM. © 2006 Wiley Periodicals, Inc. Environ Toxicol 21: 118–124, 2006.
QSARs for aromatic hydrocarbons at several trophic levels
Di Marzio, Walter (Autor:in) / Saenz, Maria Elena (Autor:in)
Environmental Toxicology ; 21 ; 118-124
01.04.2006
7 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
QSARs for aromatic hydrocarbons at several trophic levels
Online Contents | 2006
|Polycyclic aromatic hydrocarbons: levels and phase distributions in preschool microenvironment
Wiley | 2015
|Wiley | 1998
|