Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Ultrafast Jahn‐Teller Photoswitching in Cobalt Single‐Ion Magnets
Single‐ion magnets (SIMs) constitute the ultimate size limit in the quest for miniaturizing magnetic materials. Several bottlenecks currently hindering breakthroughs in quantum information and communication technologies could be alleviated by new generations of SIMs displaying multifunctionality. Here, ultrafast optical absorption spectroscopy and X‐ray emission spectroscopy are employed to track the photoinduced spin‐state switching of the prototypical complex [Co(terpy)2]2+ (terpy = 2,2′:6′,2″‐terpyridine) in solution phase. The combined measurements and their analysis supported by density functional theory (DFT), time‐dependent‐DFT (TD‐DFT) and multireference quantum chemistry calculations reveal that the complex undergoes a spin‐state transition from a tetragonally elongated doublet state to a tetragonally compressed quartet state on the femtosecond timescale, i.e., it sustains ultrafast Jahn‐Teller (JT) photoswitching between two different spin multiplicities. Adding new Co‐based complexes as possible contenders in the search for JT photoswitching SIMs will greatly widen the possibilities for implementing magnetic multifunctionality and eventually controlling ultrafast magnetization with optical photons.
Ultrafast Jahn‐Teller Photoswitching in Cobalt Single‐Ion Magnets
Single‐ion magnets (SIMs) constitute the ultimate size limit in the quest for miniaturizing magnetic materials. Several bottlenecks currently hindering breakthroughs in quantum information and communication technologies could be alleviated by new generations of SIMs displaying multifunctionality. Here, ultrafast optical absorption spectroscopy and X‐ray emission spectroscopy are employed to track the photoinduced spin‐state switching of the prototypical complex [Co(terpy)2]2+ (terpy = 2,2′:6′,2″‐terpyridine) in solution phase. The combined measurements and their analysis supported by density functional theory (DFT), time‐dependent‐DFT (TD‐DFT) and multireference quantum chemistry calculations reveal that the complex undergoes a spin‐state transition from a tetragonally elongated doublet state to a tetragonally compressed quartet state on the femtosecond timescale, i.e., it sustains ultrafast Jahn‐Teller (JT) photoswitching between two different spin multiplicities. Adding new Co‐based complexes as possible contenders in the search for JT photoswitching SIMs will greatly widen the possibilities for implementing magnetic multifunctionality and eventually controlling ultrafast magnetization with optical photons.
Ultrafast Jahn‐Teller Photoswitching in Cobalt Single‐Ion Magnets
Canton, Sophie E. (Autor:in) / Biednov, Mykola (Autor:in) / Pápai, Mátyás (Autor:in) / Lima, Frederico A. (Autor:in) / Choi, Tae‐Kyu (Autor:in) / Otte, Florian (Autor:in) / Jiang, Yifeng (Autor:in) / Frankenberger, Paul (Autor:in) / Knoll, Martin (Autor:in) / Zalden, Peter (Autor:in)
Advanced Science ; 10
01.07.2023
11 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Jahn-Teller Phenomena in Solids
British Library Online Contents | 1998
|Jahn-Teller physics and high-Tc superconductivity
British Library Online Contents | 2008
|Jahn-Teller conformations of mixed-valence many-electron dimeric cluster
British Library Online Contents | 1993
|Microscopic theory of cooperative Jahn-Teller effect in CsCuCl~3
British Library Online Contents | 1993
|Jahn-Teller Structural Phase Transition around 280K in LiMn~2O~4
British Library Online Contents | 1995
|