Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Characterization of Cross nanofluid based on infinite shear rate viscosity with inclination of magnetic dipole over a three‐dimensional bidirectional stretching sheet
Fluid viscosity manages several engineering processes and keeps its leading role in lubrication models, biological models, polymer processes, melt solutions, colloidal suspensions, and mayonnaise. The cross viscosity model is the most appropriate model, which interprets the key features of non‐Newtonian fluids in the region of shear‐thinning/thickening when very high and very low shear rates are applied. This article focuses on the mathematical model of three‐dimensional Cross nanofluid and interprets its aspect of infinite shear rate of viscosity over the expanding sheet. Velocity is studied through placing inclined magnetic dipole effect, transportation phenomenon is brought by considering the radiation effects, heat generation and chemical process is engaged for concentration of nanoparticles. The geometry of this mathematical model is expanding the stretching sheet with velocity slip, and convective heat conditions are associated. Similarity variables are being utilized for conversion dimensional mathematical model into nondimensional one. For the pursuit of numerical solution of the system of nondimensional mathematical model, the numerical technique Bvp4c is utilized. Furthermore, Matlab graphs and statistical analysis for all physical parameters and physical quantities are shown in the result and debate section. Due to inclination of angle Lorentz force producing in increasing manner, hence flow is opposed, and velocity of fluid is dropped for () and () and for increasing value of n index, the velocity of fluid flow is decreasing.
Characterization of Cross nanofluid based on infinite shear rate viscosity with inclination of magnetic dipole over a three‐dimensional bidirectional stretching sheet
Fluid viscosity manages several engineering processes and keeps its leading role in lubrication models, biological models, polymer processes, melt solutions, colloidal suspensions, and mayonnaise. The cross viscosity model is the most appropriate model, which interprets the key features of non‐Newtonian fluids in the region of shear‐thinning/thickening when very high and very low shear rates are applied. This article focuses on the mathematical model of three‐dimensional Cross nanofluid and interprets its aspect of infinite shear rate of viscosity over the expanding sheet. Velocity is studied through placing inclined magnetic dipole effect, transportation phenomenon is brought by considering the radiation effects, heat generation and chemical process is engaged for concentration of nanoparticles. The geometry of this mathematical model is expanding the stretching sheet with velocity slip, and convective heat conditions are associated. Similarity variables are being utilized for conversion dimensional mathematical model into nondimensional one. For the pursuit of numerical solution of the system of nondimensional mathematical model, the numerical technique Bvp4c is utilized. Furthermore, Matlab graphs and statistical analysis for all physical parameters and physical quantities are shown in the result and debate section. Due to inclination of angle Lorentz force producing in increasing manner, hence flow is opposed, and velocity of fluid is dropped for () and () and for increasing value of n index, the velocity of fluid flow is decreasing.
Characterization of Cross nanofluid based on infinite shear rate viscosity with inclination of magnetic dipole over a three‐dimensional bidirectional stretching sheet
Darvesh, Adil (Autor:in) / Altamirano, Gilder C. (Autor:in) / Sánchez‐Chero, Manuel (Autor:in) / Sánchez‐Chero, José Antonio (Autor:in) / Seminario‐Morales, María‐Verónica (Autor:in) / Alvarez, Marcos T. (Autor:in)
Heat Transfer ; 51 ; 7287-7306
01.12.2022
20 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch