Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Recent Advances in Nonfullerene Acceptor‐Based Layer‐by‐Layer Organic Solar Cells Using a Solution Process
Recently, sequential layer‐by‐layer (LbL) organic solar cells (OSCs) have attracted significant attention owing to their favorable p–i–n vertical phase separation, efficient charge transport/extraction, and potential for lab‐to‐fab large‐scale production, achieving high power conversion efficiencies (PCEs) of over 18%. This review first summarizes recent studies on various approaches to obtain ideal vertical D/A phase separation in nonfullerene acceptor (NFAs)‐based LbL OSCs by proper solvent selection, processing additives, protecting solvent treatment, ternary blends, etc. Additionally, the longer exciton diffusion length of NFAs compared with fullerene derivatives, which provides a new scope for further improvement in the performance of LbL OSCs, is been discussed. Large‐area device/module production by LbL techniques and device stability issues, including thermal and mechanical stability, are also reviewed. Finally, the current challenges and prospects for further progress toward their eventual commercialization are discussed.
Recent Advances in Nonfullerene Acceptor‐Based Layer‐by‐Layer Organic Solar Cells Using a Solution Process
Recently, sequential layer‐by‐layer (LbL) organic solar cells (OSCs) have attracted significant attention owing to their favorable p–i–n vertical phase separation, efficient charge transport/extraction, and potential for lab‐to‐fab large‐scale production, achieving high power conversion efficiencies (PCEs) of over 18%. This review first summarizes recent studies on various approaches to obtain ideal vertical D/A phase separation in nonfullerene acceptor (NFAs)‐based LbL OSCs by proper solvent selection, processing additives, protecting solvent treatment, ternary blends, etc. Additionally, the longer exciton diffusion length of NFAs compared with fullerene derivatives, which provides a new scope for further improvement in the performance of LbL OSCs, is been discussed. Large‐area device/module production by LbL techniques and device stability issues, including thermal and mechanical stability, are also reviewed. Finally, the current challenges and prospects for further progress toward their eventual commercialization are discussed.
Recent Advances in Nonfullerene Acceptor‐Based Layer‐by‐Layer Organic Solar Cells Using a Solution Process
Jee, Min Hun (Autor:in) / Ryu, Hwa Sook (Autor:in) / Lee, Dongmin (Autor:in) / Lee, Wonho (Autor:in) / Woo, Han Young (Autor:in)
Advanced Science ; 9
01.09.2022
21 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
An All-Small-Molecule Organic Solar Cell with High Efficiency Nonfullerene Acceptor
British Library Online Contents | 2015
|A Tetraperylene Diimides Based 3D Nonfullerene Acceptor for Efficient Organic Photovoltaics
Wiley | 2015
|