Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Inorganic polymeric materials for passive fire protection of underground constructions
Protection against fire for reinforced concrete constructions is of great importance worldwide. There is a general perception that concrete structures are incombustible and thus, they have good fire‐resistance properties. In a real fire incident, however, concrete can be subjected to excess temperatures causing severe spalling and serious damage to concrete structures with significant economic cost and high potential risk to human life safety. Although a variety of fire‐protection methods exist, there is always a need for the development of new materials with improved thermophysical properties and low cost. Inorganic polymeric materials are promising from this point of view. They are incombustible, combining excellent physical, chemical, mechanical and thermal properties with low production cost and significant environmental benefits. In this work, the thermophysical properties of ferronickel slag‐based inorganic polymeric materials are studied. The results from the laboratory scale experiments are promising and indicative of the large‐scale behavior of material. The effectiveness of this material has to be proved in large‐scale experiments at higher temperatures simulating several severe fire scenarios as well as under all kinds of mechanical loading before concluding for its applicability as a fire protection system. Copyright © 2012 John Wiley & Sons, Ltd.
Inorganic polymeric materials for passive fire protection of underground constructions
Protection against fire for reinforced concrete constructions is of great importance worldwide. There is a general perception that concrete structures are incombustible and thus, they have good fire‐resistance properties. In a real fire incident, however, concrete can be subjected to excess temperatures causing severe spalling and serious damage to concrete structures with significant economic cost and high potential risk to human life safety. Although a variety of fire‐protection methods exist, there is always a need for the development of new materials with improved thermophysical properties and low cost. Inorganic polymeric materials are promising from this point of view. They are incombustible, combining excellent physical, chemical, mechanical and thermal properties with low production cost and significant environmental benefits. In this work, the thermophysical properties of ferronickel slag‐based inorganic polymeric materials are studied. The results from the laboratory scale experiments are promising and indicative of the large‐scale behavior of material. The effectiveness of this material has to be proved in large‐scale experiments at higher temperatures simulating several severe fire scenarios as well as under all kinds of mechanical loading before concluding for its applicability as a fire protection system. Copyright © 2012 John Wiley & Sons, Ltd.
Inorganic polymeric materials for passive fire protection of underground constructions
Sakkas, Konstantinos (Autor:in) / Nomikos, Pavlos (Autor:in) / Sofianos, Alexandros (Autor:in) / Panias, Dimitrios (Autor:in)
Fire and Materials ; 37 ; 140-150
01.03.2013
11 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Inorganic polymeric materials for passive fire protection of underground constructions
Online Contents | 2013
|Inorganic polymeric materials for passive fire protection of underground constructions
British Library Online Contents | 2013
|Elsevier | 1987
PASSIVE FIRE SAFETY IN UNDERGROUND DESIGN
British Library Online Contents | 2001
|