Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
In‐situ assessment of strain behaviour inside tunnel linings using distributed fibre optic sensors
Beurteilung des In‐situ‐Dehnungsverhaltens der Tunnelschale mittels verteilter faseroptischer Messsysteme
In modern tunnelling, deformation monitoring is an important component to ensure a safe construction. It is state of the art to measure displacements at the inner side of the tunnel lining using total stations. In addition, pointwise geotechnical sensors, e.g. electric strain gauges, may be installed in geological fault zones, which, however, do not deliver a complete picture of the internal deformations. The Institute of Engineering Geodesy and Measurement Systems (Graz University of Technology) supported by the Austrian Federal Railways (ÖBB‐Infrastruktur AG, SAE Fachbereich Bautechnik/Tunnelbau) developed a fibre optic sensing system, which realizes thousands of measurement points inside the tunnel lining. The distributed measurements can be used to assess the in‐situ strain behaviour as well as to localize failures (e.g. cracks) in the lining. This paper reports about the calibration of the fibre optic system under well‐known laboratory conditions and the practical utilization of the system in mechanized and conventional tunnelling. The results demonstrate the high potential of distributed fibre optic systems and their capability especially in the operational phase to extend classical measurement methods in tunnelling projects.
Im Zuge der Errichtung von Tunnelbauwerken erweisen sich zuverlässige Überwachungsmessungen als essentieller Bestandteil, um sichere Vortriebsarbeiten garantieren zu können. Die Erfassung von Verschiebungen entlang der Innenseite der Tunnelschale erfolgt standardmäßig mit Totalstationen. Zusätzlich werden in geologischen Störzonen spezielle Messquerschnitte mit geotechnischen Sensoren wie z.B. elektrische Dehnungsgeber hergestellt. Jedoch liefern derartige Sensorsysteme lediglich punktuelle Messwerte, wodurch kein vollständiges Bild der internen Auslastung der Tunnelschale entsteht. Zur In‐situ‐Deformationsanalyse im Tunnelbau wurde vom Institut für Ingenieurgeodäsie und Messsysteme der TU Graz unterstützt von der ÖBB‐Infrastruktur AG (SAE Fachbereich Bautechnik/Tunnelbau) ein verteiltes faseroptisches Messsystem entwickelt. Aus den Dehnungsmessungen resultieren tausende Messstellen entlang einer einzelnen Messfaser im Inneren der Tunnelschale, die eine flächenhafte Beurteilung der Auslastung ermöglichen. Darüber hinaus können Überbeanspruchungen der Tunnelschale (z.B. Risse) detektiert werden. Dieser Beitrag erläutert die Kalibrierung des faseroptischen Gesamtsystems unter Laborbedingungen sowie die praktische Anwendung unter realen Umgebungsbedingungen im maschinellen und konventionellen Vortrieb. Anhand der Resultate zeigt sich, dass verteilte faseroptische Messsysteme großes Potenzial für Überwachungsmessungen in Tunnelprojekten insbesondere auch in der Betriebsphase bieten und wertvolle Informationen in Kombination mit klassischen Methoden der Ingenieurgeodäsie abgeleitet werden können.
In‐situ assessment of strain behaviour inside tunnel linings using distributed fibre optic sensors
Beurteilung des In‐situ‐Dehnungsverhaltens der Tunnelschale mittels verteilter faseroptischer Messsysteme
In modern tunnelling, deformation monitoring is an important component to ensure a safe construction. It is state of the art to measure displacements at the inner side of the tunnel lining using total stations. In addition, pointwise geotechnical sensors, e.g. electric strain gauges, may be installed in geological fault zones, which, however, do not deliver a complete picture of the internal deformations. The Institute of Engineering Geodesy and Measurement Systems (Graz University of Technology) supported by the Austrian Federal Railways (ÖBB‐Infrastruktur AG, SAE Fachbereich Bautechnik/Tunnelbau) developed a fibre optic sensing system, which realizes thousands of measurement points inside the tunnel lining. The distributed measurements can be used to assess the in‐situ strain behaviour as well as to localize failures (e.g. cracks) in the lining. This paper reports about the calibration of the fibre optic system under well‐known laboratory conditions and the practical utilization of the system in mechanized and conventional tunnelling. The results demonstrate the high potential of distributed fibre optic systems and their capability especially in the operational phase to extend classical measurement methods in tunnelling projects.
Im Zuge der Errichtung von Tunnelbauwerken erweisen sich zuverlässige Überwachungsmessungen als essentieller Bestandteil, um sichere Vortriebsarbeiten garantieren zu können. Die Erfassung von Verschiebungen entlang der Innenseite der Tunnelschale erfolgt standardmäßig mit Totalstationen. Zusätzlich werden in geologischen Störzonen spezielle Messquerschnitte mit geotechnischen Sensoren wie z.B. elektrische Dehnungsgeber hergestellt. Jedoch liefern derartige Sensorsysteme lediglich punktuelle Messwerte, wodurch kein vollständiges Bild der internen Auslastung der Tunnelschale entsteht. Zur In‐situ‐Deformationsanalyse im Tunnelbau wurde vom Institut für Ingenieurgeodäsie und Messsysteme der TU Graz unterstützt von der ÖBB‐Infrastruktur AG (SAE Fachbereich Bautechnik/Tunnelbau) ein verteiltes faseroptisches Messsystem entwickelt. Aus den Dehnungsmessungen resultieren tausende Messstellen entlang einer einzelnen Messfaser im Inneren der Tunnelschale, die eine flächenhafte Beurteilung der Auslastung ermöglichen. Darüber hinaus können Überbeanspruchungen der Tunnelschale (z.B. Risse) detektiert werden. Dieser Beitrag erläutert die Kalibrierung des faseroptischen Gesamtsystems unter Laborbedingungen sowie die praktische Anwendung unter realen Umgebungsbedingungen im maschinellen und konventionellen Vortrieb. Anhand der Resultate zeigt sich, dass verteilte faseroptische Messsysteme großes Potenzial für Überwachungsmessungen in Tunnelprojekten insbesondere auch in der Betriebsphase bieten und wertvolle Informationen in Kombination mit klassischen Methoden der Ingenieurgeodäsie abgeleitet werden können.
In‐situ assessment of strain behaviour inside tunnel linings using distributed fibre optic sensors
Beurteilung des In‐situ‐Dehnungsverhaltens der Tunnelschale mittels verteilter faseroptischer Messsysteme
Monsberger, Christoph M. (Autor:in) / Lienhart, Werner (Autor:in) / Moritz, Bernd (Autor:in)
Geomechanics and Tunnelling ; 11 ; 701-709
01.12.2018
9 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Deutsch
Distributed Fibre Optic Sensing for Long-Term Monitoring of Tunnel Inner Linings in Anhydrite
Springer Verlag | 2021
|Steel-fibre-reinforced shotcrete for tunnel linings
Tema Archiv | 1986
|Engineering Index Backfile | 1956
|Engineering Index Backfile | 1957
|