Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Evaluation of horizontal stiffness of fibre‐reinforced elastomeric isolators
Unbonded fibre‐reinforced elastomeric isolator (U‐FREI) is relatively new seismic base isolator in which fibre layers are used as reinforcement to replace steel shims as are normally used in conventional isolators. Further, the top and bottom end steel connector plates of conventional isolators are also removed. In general, the horizontal response of U‐FREI is nonlinear because of reduction in contact area due to rollover deformation and reduction in shear modulus of isolator under large deformation. Thus, evaluation of horizontal stiffness of U‐FREI is a challenging problem. Most previous studies were focused on the investigation of horizontal response of scaled models of U‐FREIs with low shape factors. A few analytical approaches were suggested for predicting the horizontal response of U‐FREI; but their results were not in good agreement with experimental observations. In the present study, the horizontal responses of prototype U‐FREIs are evaluated under a constant vertical pressure and cyclic loading using both experiments and finite element analysis. Prototype U‐FREIs with different shear moduli and with different shape factors are considered. Finite element simulations of corresponding bonded FREIs are also performed under the same loadings as in U‐FREIs. A rational analytical approach including the influence of rollover deformation and simultaneous reduction in shear modulus is proposed as a basic analytical tool for predicting the horizontal stiffness of FREIs (both bonded and unbonded). It is in reasonably good agreement with the results obtained from experiments and numerical analysis. Copyright © 2017 John Wiley & Sons, Ltd.
Evaluation of horizontal stiffness of fibre‐reinforced elastomeric isolators
Unbonded fibre‐reinforced elastomeric isolator (U‐FREI) is relatively new seismic base isolator in which fibre layers are used as reinforcement to replace steel shims as are normally used in conventional isolators. Further, the top and bottom end steel connector plates of conventional isolators are also removed. In general, the horizontal response of U‐FREI is nonlinear because of reduction in contact area due to rollover deformation and reduction in shear modulus of isolator under large deformation. Thus, evaluation of horizontal stiffness of U‐FREI is a challenging problem. Most previous studies were focused on the investigation of horizontal response of scaled models of U‐FREIs with low shape factors. A few analytical approaches were suggested for predicting the horizontal response of U‐FREI; but their results were not in good agreement with experimental observations. In the present study, the horizontal responses of prototype U‐FREIs are evaluated under a constant vertical pressure and cyclic loading using both experiments and finite element analysis. Prototype U‐FREIs with different shear moduli and with different shape factors are considered. Finite element simulations of corresponding bonded FREIs are also performed under the same loadings as in U‐FREIs. A rational analytical approach including the influence of rollover deformation and simultaneous reduction in shear modulus is proposed as a basic analytical tool for predicting the horizontal stiffness of FREIs (both bonded and unbonded). It is in reasonably good agreement with the results obtained from experiments and numerical analysis. Copyright © 2017 John Wiley & Sons, Ltd.
Evaluation of horizontal stiffness of fibre‐reinforced elastomeric isolators
Van Ngo, Thuyet (Autor:in) / Dutta, Anjan (Autor:in) / Deb, Sajal K. (Autor:in)
Earthquake Engineering & Structural Dynamics ; 46 ; 1747-1767
01.09.2017
21 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Stability Assessments of Unbonded Fiber Reinforced Elastomeric Isolators
BASE | 2022
|Systematic design of unbonded fiber reinforced elastomeric isolators
Online Contents | 2017
|Partially bonded fiber-reinforced elastomeric isolators (PB-FREIs)
Tema Archiv | 2015
|Analysis of fiber-reinforced elastomeric isolators under pure ``warping''
British Library Online Contents | 2017
|