Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Radiation and slip effects on MHD point flow of nanofluid towards a stretching sheet with melting heat transfer
In the present paper, the melting heat transfer of a nanofluid over a stretching sheet is investigated. Magnetohydrodynamic stagnation point flow with thermal radiation and slip effects is considered for this study. The governing model of the flow is solved by Runge–Kutta fourth‐order method using appropriate similarity transformations. Temperature and velocity fields are presented for various flow pertinent parameters. Nondimensional physical parameters such as Prandtl number, radiation parameter, Brownian motion parameter, Lewis number, thermophoresis parameter, magnetic parameter, and melting parameter on fluid velocity, heat, concentration, skin friction, Sherwood number, and Nusselt number are presented graphically and discussed numerically. Heat transfer rate can be increased by increasing slip, melting, or radiation parameter. Mass transfer increases for greater values of melting parameter or slip parameter while radiation parameter shows the opposite impact on mass transfer.
Radiation and slip effects on MHD point flow of nanofluid towards a stretching sheet with melting heat transfer
In the present paper, the melting heat transfer of a nanofluid over a stretching sheet is investigated. Magnetohydrodynamic stagnation point flow with thermal radiation and slip effects is considered for this study. The governing model of the flow is solved by Runge–Kutta fourth‐order method using appropriate similarity transformations. Temperature and velocity fields are presented for various flow pertinent parameters. Nondimensional physical parameters such as Prandtl number, radiation parameter, Brownian motion parameter, Lewis number, thermophoresis parameter, magnetic parameter, and melting parameter on fluid velocity, heat, concentration, skin friction, Sherwood number, and Nusselt number are presented graphically and discussed numerically. Heat transfer rate can be increased by increasing slip, melting, or radiation parameter. Mass transfer increases for greater values of melting parameter or slip parameter while radiation parameter shows the opposite impact on mass transfer.
Radiation and slip effects on MHD point flow of nanofluid towards a stretching sheet with melting heat transfer
Kumar, Navin (Autor:in) / Jat, Ram Niwas (Autor:in) / Sinha, Sharad (Autor:in) / Dadheech, Praveen Kumar (Autor:in) / Agrawal, Priyanka (Autor:in) / Purohit, Sunil Dutt (Autor:in) / Nisar, Kottakkaran Sooppy (Autor:in)
Heat Transfer ; 51 ; 3018-3034
01.06.2022
17 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch