Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Analytical Model for Viscous Wall Dampers
By now, many civil engineering researchers have extensively studied the application of earthquake energy dissipation systems in seismic‐resistant buildings. Earthquake energy dissipation systems play an important role in enhancing the sustainability of structures against seismic excitation. Frame buildings are strengthened by installing damper devices as supplemental structural members. This article presents the finite‐element‐based development of an analytical model for a viscous wall damper (VWD) device, an alternative to other earthquake energy dissipation systems, which can diminish the effect of earthquakes on structures and improve the seismic performance of multistory buildings subjected to ground motion. The constitutive law of VWDs has been formulated and integrated to develop a finite element model of VWD compatible with the reinforced concrete (RC) structure analytical model. Then, the finite element algorithm has been developed for inelastic analysis of RC buildings equipped with VWD devices capable of detecting damage to both structural members and damper connections under dynamic loading. Based on the developed system, the special finite element program was codified and verified by applying it to a real model of a RC building with supplementary VWD devices. Influence of VWDs on seismic performance of the RC building during earthquake excitation was evaluated. The proposed analytical model for VWD is verified by using experimental test data and analysis result proved that this energy dissipation system succeeds by substantially diminishing and dissipating a structure's induced seismic responses. Also the parametric study indicated that the damping coefficient is very effective on performance of VWD.
Analytical Model for Viscous Wall Dampers
By now, many civil engineering researchers have extensively studied the application of earthquake energy dissipation systems in seismic‐resistant buildings. Earthquake energy dissipation systems play an important role in enhancing the sustainability of structures against seismic excitation. Frame buildings are strengthened by installing damper devices as supplemental structural members. This article presents the finite‐element‐based development of an analytical model for a viscous wall damper (VWD) device, an alternative to other earthquake energy dissipation systems, which can diminish the effect of earthquakes on structures and improve the seismic performance of multistory buildings subjected to ground motion. The constitutive law of VWDs has been formulated and integrated to develop a finite element model of VWD compatible with the reinforced concrete (RC) structure analytical model. Then, the finite element algorithm has been developed for inelastic analysis of RC buildings equipped with VWD devices capable of detecting damage to both structural members and damper connections under dynamic loading. Based on the developed system, the special finite element program was codified and verified by applying it to a real model of a RC building with supplementary VWD devices. Influence of VWDs on seismic performance of the RC building during earthquake excitation was evaluated. The proposed analytical model for VWD is verified by using experimental test data and analysis result proved that this energy dissipation system succeeds by substantially diminishing and dissipating a structure's induced seismic responses. Also the parametric study indicated that the damping coefficient is very effective on performance of VWD.
Analytical Model for Viscous Wall Dampers
Hejazi, F. (Autor:in) / Shoaei, M. Dalili (Autor:in) / Tousi, A. (Autor:in) / Jaafar, M. S. (Autor:in)
Computer‐Aided Civil and Infrastructure Engineering ; 31 ; 381-399
01.05.2016
19 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Analytical Model for Viscous Wall Dampers
Online Contents | 2016
|Analytical Model for Viscous Wall Dampers
Online Contents | 2015
|Seismic Design of a 15 Story Hospital Using Viscous Wall Dampers
British Library Conference Proceedings | 2011
|Analytical investigation of the response of a building with added viscous dampers
British Library Conference Proceedings | 1996
|