Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Changes in habitat heterogeneity alter marine sessile benthic communities
Habitat heterogeneity is considered an important mechanism influencing diversity patterns in spatially structured habitats. However, spatial heterogeneity is not static and it can change along temporal scales. These changes, whether gradual or rapid, have the potential of forcing species extinctions or facilitating the introduction of nonnative species. Here, we present modeling results that show how changes in spatial heterogeneity over several generations can produce strong changes in benthic species composition residing in eastern Long Island Sound, USA. For many benthic species, hard substrate is a limiting resource which can vary in availability among different coastal areas. We modeled gradual changes from a heterogeneous landscape (mimicking patches of natural hard and soft substrate) to a homogenous one (analogous to a fully developed coast with hard, manmade substrate) and followed the abundance and distribution patterns of species possessing four different life histories. We also modeled changes from homogeneous to heterogeneous landscapes. We found that as regions become more homogeneous, species extinctions become more frequent and poor dispersers dominate locally. In contrast, as habitats become more heterogeneous, species distributing across localities leads to regional species coexistence and fewer extinctions. These results suggest that focusing on changing habitat heterogeneity can be a useful management strategy to prevent poor dispersing species, such as invasive ascidians, from driving communities to monocultures.
Changes in habitat heterogeneity alter marine sessile benthic communities
Habitat heterogeneity is considered an important mechanism influencing diversity patterns in spatially structured habitats. However, spatial heterogeneity is not static and it can change along temporal scales. These changes, whether gradual or rapid, have the potential of forcing species extinctions or facilitating the introduction of nonnative species. Here, we present modeling results that show how changes in spatial heterogeneity over several generations can produce strong changes in benthic species composition residing in eastern Long Island Sound, USA. For many benthic species, hard substrate is a limiting resource which can vary in availability among different coastal areas. We modeled gradual changes from a heterogeneous landscape (mimicking patches of natural hard and soft substrate) to a homogenous one (analogous to a fully developed coast with hard, manmade substrate) and followed the abundance and distribution patterns of species possessing four different life histories. We also modeled changes from homogeneous to heterogeneous landscapes. We found that as regions become more homogeneous, species extinctions become more frequent and poor dispersers dominate locally. In contrast, as habitats become more heterogeneous, species distributing across localities leads to regional species coexistence and fewer extinctions. These results suggest that focusing on changing habitat heterogeneity can be a useful management strategy to prevent poor dispersing species, such as invasive ascidians, from driving communities to monocultures.
Changes in habitat heterogeneity alter marine sessile benthic communities
Munguia, Pablo (Autor:in) / Osman, Richard W. (Autor:in) / Hamilton, John (Autor:in) / Whitlatch, Robert (Autor:in) / Zajac, Roman (Autor:in)
Ecological Applications ; 21 ; 925-935
01.04.2011
11 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
New Equipment for Benthic Habitat Studies
British Library Online Contents | 1998
|DOAJ | 2020
|Evaluation of the impact of industrial sewage pollution on marine benthic communities
British Library Online Contents | 2011
|