Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Metformin Restores Tetracyclines Susceptibility against Multidrug Resistant Bacteria
Highly persistent incidence of multidrug resistant (MDR) bacterial pathogens constitutes a global burden for public health. An alternative strategy to alleviate such a crisis is to identify promising compounds to restore antibiotics activity against MDR bacteria. It is reported that the antidiabetic drug metformin exhibits the potentiation effect on tetracycline antibiotics, particularly doxycycline and minocycline, against MDR S. aureus, E. faecalis, E. coli, and S. enteritidis. Mechanistic studies demonstrate that metformin promotes intracellular accumulation of doxycycline in tetracycline‐resistant E. coli. In addition, metformin boosts the immune response and alleviates the inflammatory responses in vitro. Last, metformin fully restores the activity of doxycycline in three animal infection models. Collectively, these results reveal the potential of metformin as a novel tetracyclines adjuvant to circumvent MDR bacterial pathogens and to improve the treatment outcome of recalcitrant infections.
Metformin Restores Tetracyclines Susceptibility against Multidrug Resistant Bacteria
Highly persistent incidence of multidrug resistant (MDR) bacterial pathogens constitutes a global burden for public health. An alternative strategy to alleviate such a crisis is to identify promising compounds to restore antibiotics activity against MDR bacteria. It is reported that the antidiabetic drug metformin exhibits the potentiation effect on tetracycline antibiotics, particularly doxycycline and minocycline, against MDR S. aureus, E. faecalis, E. coli, and S. enteritidis. Mechanistic studies demonstrate that metformin promotes intracellular accumulation of doxycycline in tetracycline‐resistant E. coli. In addition, metformin boosts the immune response and alleviates the inflammatory responses in vitro. Last, metformin fully restores the activity of doxycycline in three animal infection models. Collectively, these results reveal the potential of metformin as a novel tetracyclines adjuvant to circumvent MDR bacterial pathogens and to improve the treatment outcome of recalcitrant infections.
Metformin Restores Tetracyclines Susceptibility against Multidrug Resistant Bacteria
Liu, Yuan (Autor:in) / Jia, Yuqian (Autor:in) / Yang, Kangni (Autor:in) / Li, Ruichao (Autor:in) / Xiao, Xia (Autor:in) / Zhu, Kui (Autor:in) / Wang, Zhiqiang (Autor:in)
Advanced Science ; 7
01.06.2020
13 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Efficient Killing of Multidrug‐Resistant Internalized Bacteria by AIEgens In Vivo
Wiley | 2021
|Fe(II)-substituted cobalt ferrite nanoparticles against multidrug resistant microorganisms
British Library Online Contents | 2018
|