Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Responsive Accumulation of Nanohybrids to Boost NIR‐Phototheranostics for Specific Tumor Imaging and Glutathione Depletion‐Enhanced Synergistic Therapy
Dynamic regulation of nanoparticles in a controllable manner has great potential in various areas. Compared to the individual nanoparticles, the assembled nanoparticles exhibit superior properties and functions, which can be applied to achieve desirable performances. Here, a pH‐responsive i‐motif DNA‐mediated strategy to tailor the programmable behaviors of erbium‐based rare‐earth nanoparticles (ErNPs) decorated copper doped metal‐organic framework (CPM) nanohybrids (ECPM) under physiological conditions is reported. Within the acidic tumor microenvironment, the i‐motif DNA strands are able to form quadruplex structures, resulting in the assembly of nanohybrids and selective tumor accumulation, which further amplify the ErNPs downconversion emission (1550 nm) signal for imaging. Meanwhile, the ECPM matrix acts as a near‐infrared (NIR) photon‐activated reactive oxygen species (ROS) amplifier through the singlet oxygen generation of the matrix in combination with its ability of intracellular glutathione depletion upon irradiation. In short, this work displays a classical example of engineering of nanoparticles, which will manifest the importance of developing nanohybrids with structural programmability in biomedical applications.
Responsive Accumulation of Nanohybrids to Boost NIR‐Phototheranostics for Specific Tumor Imaging and Glutathione Depletion‐Enhanced Synergistic Therapy
Dynamic regulation of nanoparticles in a controllable manner has great potential in various areas. Compared to the individual nanoparticles, the assembled nanoparticles exhibit superior properties and functions, which can be applied to achieve desirable performances. Here, a pH‐responsive i‐motif DNA‐mediated strategy to tailor the programmable behaviors of erbium‐based rare‐earth nanoparticles (ErNPs) decorated copper doped metal‐organic framework (CPM) nanohybrids (ECPM) under physiological conditions is reported. Within the acidic tumor microenvironment, the i‐motif DNA strands are able to form quadruplex structures, resulting in the assembly of nanohybrids and selective tumor accumulation, which further amplify the ErNPs downconversion emission (1550 nm) signal for imaging. Meanwhile, the ECPM matrix acts as a near‐infrared (NIR) photon‐activated reactive oxygen species (ROS) amplifier through the singlet oxygen generation of the matrix in combination with its ability of intracellular glutathione depletion upon irradiation. In short, this work displays a classical example of engineering of nanoparticles, which will manifest the importance of developing nanohybrids with structural programmability in biomedical applications.
Responsive Accumulation of Nanohybrids to Boost NIR‐Phototheranostics for Specific Tumor Imaging and Glutathione Depletion‐Enhanced Synergistic Therapy
He, Liangcan (Autor:in) / Zheng, Nannan (Autor:in) / Wang, Qinghui (Autor:in) / Du, Jiarui (Autor:in) / Wang, Shumin (Autor:in) / Cao, Zhiyue (Autor:in) / Wang, Zhantong (Autor:in) / Chen, Guanying (Autor:in) / Mu, Jing (Autor:in) / Liu, Shaoqin (Autor:in)
Advanced Science ; 10
01.01.2023
12 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Semiconducting Open‐Shell Radicals for Precise Tumor Activatable Phototheranostics
Wiley | 2025
|Engineered Nanocatalyst‐Enabled Cheolesterol Depletion for Enhanced Tumor Piezocatalytic Therapy
Wiley | 2025
|Single Near‐Infrared Emissive Polymer Nanoparticles as Versatile Phototheranostics
Wiley | 2017
|