Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Reversible Deactivation Radical Polymerization: From Polymer Network Synthesis to 3D Printing
3D printing has changed the fabrication of advanced materials as it can provide customized and on‐demand 3D networks. However, 3D printing of polymer materials with the capacity to be transformed after printing remains a great challenge for engineers, material, and polymer scientists. Radical polymerization has been conventionally used in photopolymerization‐based 3D printing, as in the broader context of crosslinked polymer networks. Although this reaction pathway has shown great promise, it offers limited control over chain growth, chain architecture, and thus the final properties of the polymer networks. More fundamentally, radical polymerization produces dead polymer chains incapable of postpolymerization transformations. Alternatively, the application of reversible deactivation radical polymerization (RDRP) to polymer networks allows the tuning of network homogeneity and more importantly, enables the production of advanced materials containing dormant reactivatable species that can be used for subsequent processes in a postsynthetic stage. Consequently, the opportunities that (photoactivated) RDRP‐based networks offer have been leveraged through the novel concepts of structurally tailored and engineered macromolecular gels, living additive manufacturing and photoexpandable/transformable‐polymer networks. Herein, the advantages of RDRP‐based networks over irreversibly formed conventional networks are discussed.
Reversible Deactivation Radical Polymerization: From Polymer Network Synthesis to 3D Printing
3D printing has changed the fabrication of advanced materials as it can provide customized and on‐demand 3D networks. However, 3D printing of polymer materials with the capacity to be transformed after printing remains a great challenge for engineers, material, and polymer scientists. Radical polymerization has been conventionally used in photopolymerization‐based 3D printing, as in the broader context of crosslinked polymer networks. Although this reaction pathway has shown great promise, it offers limited control over chain growth, chain architecture, and thus the final properties of the polymer networks. More fundamentally, radical polymerization produces dead polymer chains incapable of postpolymerization transformations. Alternatively, the application of reversible deactivation radical polymerization (RDRP) to polymer networks allows the tuning of network homogeneity and more importantly, enables the production of advanced materials containing dormant reactivatable species that can be used for subsequent processes in a postsynthetic stage. Consequently, the opportunities that (photoactivated) RDRP‐based networks offer have been leveraged through the novel concepts of structurally tailored and engineered macromolecular gels, living additive manufacturing and photoexpandable/transformable‐polymer networks. Herein, the advantages of RDRP‐based networks over irreversibly formed conventional networks are discussed.
Reversible Deactivation Radical Polymerization: From Polymer Network Synthesis to 3D Printing
Bagheri, Ali (Autor:in) / Fellows, Christopher M. (Autor:in) / Boyer, Cyrille (Autor:in)
Advanced Science ; 8
01.03.2021
16 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Wiley | 2023
|British Library Online Contents | 1999
|Preparing polymer brushes on polytetrafluoroethylene films by free radical polymerization
British Library Online Contents | 2006
|Controlled/living radical polymerization
British Library Online Contents | 2005
|