A platform for research: civil engineering, architecture and urbanism
Nanotubes: Mechanical Force-Driven Growth of Elongated Bending TiO2-based Nanotubular Materials for Ultrafast Rechargeable Lithium Ion Batteries (Adv. Mater. 35/2014)
Nanotubes: Mechanical Force-Driven Growth of Elongated Bending TiO2-based Nanotubular Materials for Ultrafast Rechargeable Lithium Ion Batteries (Adv. Mater. 35/2014)
Nanotubes: Mechanical Force-Driven Growth of Elongated Bending TiO2-based Nanotubular Materials for Ultrafast Rechargeable Lithium Ion Batteries (Adv. Mater. 35/2014)
Tang, Y. (author) / Zhang, Y. (author) / Deng, J. (author) / Wei, J. (author) / Tam, H. L. (author) / Chandran, B. K. (author) / Dong, Z. (author) / Chen, Z. (author) / Chen, X. (author)
ADVANCED MATERIALS -DEERFIELD BEACH THEN WEINHEIM- ; 26 ; 6046-6046
2014-01-01
1 pages
Article (Journal)
English
DDC:
620.11
© Metadata Copyright the British Library Board and other contributors. All rights reserved.
British Library Online Contents | 2014
|British Library Online Contents | 2014
|British Library Online Contents | 2014
|Materials challenges in rechargeable lithium-air batteries
British Library Online Contents | 2014
|Insertion Electrode Materials for Rechargeable Lithium Batteries
British Library Online Contents | 1998
|