A platform for research: civil engineering, architecture and urbanism
Plant Polyphenol-Driven Polymerization-Confinement Strategy toward Ultrahighly Loaded Atomically Dispersed FeCo Bimetallic Catalysts for Singlet Oxygen-Dominated Fenton-like Reactions
Recent progress has brought carbon-confined transition metal catalysts to the forefront as effective agents for Fenton-like reactions. However, achieving a stable integration of densely loaded and well-dispersed transition metals onto carbon support poses significant challenges. Herein, we introduce a plant polyphenol-driven polymerization-confinement method for the synthesis of a highly dispersed FeCo bimetallic catalyst (FeCo@NGB). Utilizing the chelating effect of tea polyphenols with metal ions and their subsequent polymerization and confinement offers a durable solution for stabilizing the FeCo bimetallic sites. The resulting FeCo@NGB demonstrates exceptional performance in activating peroxymonosulfate (PMS) for the swift degradation of tetracycline (TC), with a 99.5% reduction achieved in just 30 min, predominantly through a singlet oxygen (1O2)-driven pathway. Experimental and theoretical calculations highlight the pivotal role of atomically dispersed FeN4–CoN3 sites in facilitating rapid electron transfer between the catalyst and PMS, thereby enhancing 1O2 production. This work not only advances the development of high-performance multiphase catalysts but also introduces a compelling strategy for water purification leveraging nonradical oxidative pathways.
Plant Polyphenol-Driven Polymerization-Confinement Strategy toward Ultrahighly Loaded Atomically Dispersed FeCo Bimetallic Catalysts for Singlet Oxygen-Dominated Fenton-like Reactions
Recent progress has brought carbon-confined transition metal catalysts to the forefront as effective agents for Fenton-like reactions. However, achieving a stable integration of densely loaded and well-dispersed transition metals onto carbon support poses significant challenges. Herein, we introduce a plant polyphenol-driven polymerization-confinement method for the synthesis of a highly dispersed FeCo bimetallic catalyst (FeCo@NGB). Utilizing the chelating effect of tea polyphenols with metal ions and their subsequent polymerization and confinement offers a durable solution for stabilizing the FeCo bimetallic sites. The resulting FeCo@NGB demonstrates exceptional performance in activating peroxymonosulfate (PMS) for the swift degradation of tetracycline (TC), with a 99.5% reduction achieved in just 30 min, predominantly through a singlet oxygen (1O2)-driven pathway. Experimental and theoretical calculations highlight the pivotal role of atomically dispersed FeN4–CoN3 sites in facilitating rapid electron transfer between the catalyst and PMS, thereby enhancing 1O2 production. This work not only advances the development of high-performance multiphase catalysts but also introduces a compelling strategy for water purification leveraging nonradical oxidative pathways.
Plant Polyphenol-Driven Polymerization-Confinement Strategy toward Ultrahighly Loaded Atomically Dispersed FeCo Bimetallic Catalysts for Singlet Oxygen-Dominated Fenton-like Reactions
Wang, Yue (author) / Liu, Zhenglong (author) / Kang, Weilu (author) / Li, Tielong (author) / Wang, Haitao (author)
ACS ES&T Engineering ; 4 ; 2263-2273
2024-09-13
Article (Journal)
Electronic Resource
English
Rational Design of Atomically Dispersed Metal Site Electrocatalysts for Oxygen Reduction Reaction
Wiley | 2023
|American Chemical Society | 2023
|Well-Dispersed Bimetallic Nanoparticles
Springer Verlag | 2004
|