A platform for research: civil engineering, architecture and urbanism
Phosphate (Bio)mineralization Remediation of 90Sr-Contaminated Groundwaters
Historical operations at nuclear mega-facilities such as Hanford, USA, and Sellafield, UK have led to a legacy of radioactivity-contaminated land. Calcium phosphate phases (e.g., hydroxyapatite) can adsorb and/or incorporate radionuclides, including 90Sr. Past work has shown that aqueous injection of Ca-phosphate-generating solutions into the contaminated ground on both laboratory and field scales can reduce the amount of aqueous 90Sr in the systems. Here, two microbially mediated phosphate amendment techniques which precipitated Ca-phosphate, (i) Ca-citrate/Na-phosphate and (ii) glycerol phosphate, were tested in batch experiments alongside an abiotic treatment ((iii) polyphosphate), using stable Sr and site relevant groundwaters and sediments. All three amendments led to enhanced Sr removal from the solution compared to the sediment-only control. The Ca-citrate/Na-phosphate treatment removed 97%, glycerol phosphate 60%, and polyphosphate 55% of the initial Sr. At experimental end points, scanning electron microscopy showed that Sr-containing, Ca-phosphate phases were deposited on sediment grains, and XAS analyses of the sediments amended with Ca-citrate/Na-phosphate and glycerol phosphate confirmed Sr incorporation into Ca-phosphates occurred. Overall, Ca-phosphate-generating treatments have the potential to be applied in a range of nuclear sites and are a key option within the toolkit for 90Sr groundwater remediation.
Aqueous strontium is sequestered in microcosm remediation experiments amended with phosphate through incorporation into low-solubility calcium phosphate mineral phases.
Phosphate (Bio)mineralization Remediation of 90Sr-Contaminated Groundwaters
Historical operations at nuclear mega-facilities such as Hanford, USA, and Sellafield, UK have led to a legacy of radioactivity-contaminated land. Calcium phosphate phases (e.g., hydroxyapatite) can adsorb and/or incorporate radionuclides, including 90Sr. Past work has shown that aqueous injection of Ca-phosphate-generating solutions into the contaminated ground on both laboratory and field scales can reduce the amount of aqueous 90Sr in the systems. Here, two microbially mediated phosphate amendment techniques which precipitated Ca-phosphate, (i) Ca-citrate/Na-phosphate and (ii) glycerol phosphate, were tested in batch experiments alongside an abiotic treatment ((iii) polyphosphate), using stable Sr and site relevant groundwaters and sediments. All three amendments led to enhanced Sr removal from the solution compared to the sediment-only control. The Ca-citrate/Na-phosphate treatment removed 97%, glycerol phosphate 60%, and polyphosphate 55% of the initial Sr. At experimental end points, scanning electron microscopy showed that Sr-containing, Ca-phosphate phases were deposited on sediment grains, and XAS analyses of the sediments amended with Ca-citrate/Na-phosphate and glycerol phosphate confirmed Sr incorporation into Ca-phosphates occurred. Overall, Ca-phosphate-generating treatments have the potential to be applied in a range of nuclear sites and are a key option within the toolkit for 90Sr groundwater remediation.
Aqueous strontium is sequestered in microcosm remediation experiments amended with phosphate through incorporation into low-solubility calcium phosphate mineral phases.
Phosphate (Bio)mineralization Remediation of 90Sr-Contaminated Groundwaters
Robinson, Callum (author) / Shaw, Samuel (author) / Lloyd, Jonathan R. (author) / Graham, James (author) / Morris, Katherine (author)
ACS ES&T Water ; 3 ; 3223-3234
2023-10-13
Article (Journal)
Electronic Resource
English
Recent advances in the bioremediation of arsenic-contaminated groundwaters
Online Contents | 2005
|Setting goals for the protection and remediation of groundwaters in industrial catchments
British Library Conference Proceedings | 1997
|