A platform for research: civil engineering, architecture and urbanism
Data-driven modeling of the wake behind a wind turbine array
The wake flow in a wind turbine array boundary layer is described using the Koopman operator. Dynamics of the flow are decomposed into the linear and forcing terms, and the low-energy delay coordinates are revealed. The rare events show the non-Gaussian long tails that capture the switching and bursting phenomena. The near-wake region shows the incoherent phase space region, where the dynamics are strongly nonlinear. The far-wake region is marked with the small non-Gaussian forcing term, and the dynamics are largely governed by linear dynamics. The data-driven predictive model is built based on the Hankel-based dynamic mode decomposition and treats the nonlinear state of forcing term as external actuation. The model forecasts the evolution of the flow field for short-term timescales. The mean relative errors between the predictive and test fluctuating velocities are approximately 15%.
Data-driven modeling of the wake behind a wind turbine array
The wake flow in a wind turbine array boundary layer is described using the Koopman operator. Dynamics of the flow are decomposed into the linear and forcing terms, and the low-energy delay coordinates are revealed. The rare events show the non-Gaussian long tails that capture the switching and bursting phenomena. The near-wake region shows the incoherent phase space region, where the dynamics are strongly nonlinear. The far-wake region is marked with the small non-Gaussian forcing term, and the dynamics are largely governed by linear dynamics. The data-driven predictive model is built based on the Hankel-based dynamic mode decomposition and treats the nonlinear state of forcing term as external actuation. The model forecasts the evolution of the flow field for short-term timescales. The mean relative errors between the predictive and test fluctuating velocities are approximately 15%.
Data-driven modeling of the wake behind a wind turbine array
Ali, Naseem (author) / Cal, Raúl Bayoán (author)
2020-05-01
10 pages
Article (Journal)
Electronic Resource
English
Computing turbulent far-wake development behind a wind turbine with and without swirl
Online Contents | 2012
|Data‐driven modelling of turbine wake interactions and flow resistance in large wind farms
BASE | 2023
|