A platform for research: civil engineering, architecture and urbanism
Optimization and experimental analysis of a solar powered adsorption refrigeration system using selective adsorbent/adsorbate pairs
Adsorption-based cooling system is a cost-effective method of heat conversion. It has the potential to dramatically enhance energy efficiency while also lowering pollutant levels. For this purpose, a solar-powered vapor adsorption refrigeration system (VAdRS) using activated carbon–methanol and zeolite–water as the working pair has been designed and experimentally evaluated. The aim of this experiment was to evaluate the coefficient of performance (COP) and specific cooling power (SCP) of a solar cooling unit by utilizing the optimum minimum and maximum mass concentration ratios. The novel solar-assisted adsorption refrigeration system optimization technique is used in this research to evaluate the optimal performance of the solar-powered VAdRS under various operating scenarios. The experiment was conducted at the optimum minimum and maximum mass concentration ratios of 0.1 and 0.2, respectively. The experimental results show that the activated carbon–methanol adsorption system produces a higher COP value than the zeolite–water adsorption system of 0.49–0.64 and 0.64–0.67 at constant evaporator and condenser temperature, respectively. It also showed that the higher SCP value was revealed in the zeolite–water-based adsorption cooling system as 207.5–217.4 kJ/kg. It was revealed that AC–methanol could be used to operate better in low-generating-temperature conditions. On the other hand, the zeolite–water adsorption system can be used at higher generating temperatures.
Optimization and experimental analysis of a solar powered adsorption refrigeration system using selective adsorbent/adsorbate pairs
Adsorption-based cooling system is a cost-effective method of heat conversion. It has the potential to dramatically enhance energy efficiency while also lowering pollutant levels. For this purpose, a solar-powered vapor adsorption refrigeration system (VAdRS) using activated carbon–methanol and zeolite–water as the working pair has been designed and experimentally evaluated. The aim of this experiment was to evaluate the coefficient of performance (COP) and specific cooling power (SCP) of a solar cooling unit by utilizing the optimum minimum and maximum mass concentration ratios. The novel solar-assisted adsorption refrigeration system optimization technique is used in this research to evaluate the optimal performance of the solar-powered VAdRS under various operating scenarios. The experiment was conducted at the optimum minimum and maximum mass concentration ratios of 0.1 and 0.2, respectively. The experimental results show that the activated carbon–methanol adsorption system produces a higher COP value than the zeolite–water adsorption system of 0.49–0.64 and 0.64–0.67 at constant evaporator and condenser temperature, respectively. It also showed that the higher SCP value was revealed in the zeolite–water-based adsorption cooling system as 207.5–217.4 kJ/kg. It was revealed that AC–methanol could be used to operate better in low-generating-temperature conditions. On the other hand, the zeolite–water adsorption system can be used at higher generating temperatures.
Optimization and experimental analysis of a solar powered adsorption refrigeration system using selective adsorbent/adsorbate pairs
Saravanan, N. (author) / Edwin, M. (author)
2022-03-01
14 pages
Article (Journal)
Electronic Resource
English
DataCite | 2020
|DOAJ | 2020
|British Library Online Contents | 2016
|A Solar-Powered In-Vehicle Semiconductor Refrigeration System
British Library Conference Proceedings | 2014
|