A platform for research: civil engineering, architecture and urbanism
Blast Testing of Loaded Cross-Laminated Timber Structures
Results from a series of blast tests performed in October 2016 on three two-story, single-bay cross-laminated timber (CLT) structures demonstrated the ability of CLT construction to resist airblast loads in a predictable fashion. These tests were performed on structures without superimposed load to limit inertial resistance. Subsequently, a follow-on series of tests was performed to investigate the response of axially-loaded CLT construction. Panels damaged during the preceding test were removed and replaced. Axial load was applied using precast concrete blocks to simulate the loaded condition of a five-story building at the first-floor front panel of the structures. These test structures were exposed to two shots: the first was designed to keep the structures within their respective elastic ranges while the second was designed to push the structures beyond their elastic limits. Reflected pressure and peak deflections were recorded at the front panels of the test structures to document the two-way panel load distribution behavior under a dynamic load event and the clearing of the shock wave. Prior to conducting the blast tests, a small number of tests were performed on a load tree test apparatus to aid in test planning by investigating the post-peak response of individual CLT panels of various lengths to quasi-static out-of-plane and axial loads applied simultaneously. This paper provides an overview of the results obtained from both the quasi-static and blast tests of axially-loaded CLT. Additionally, the paper compares CLT structure, component, and connection response across the suite of data. Conclusions are offered to assist engineers in the design of load bearing CLT construction exposed to airblast loads.
Blast Testing of Loaded Cross-Laminated Timber Structures
Results from a series of blast tests performed in October 2016 on three two-story, single-bay cross-laminated timber (CLT) structures demonstrated the ability of CLT construction to resist airblast loads in a predictable fashion. These tests were performed on structures without superimposed load to limit inertial resistance. Subsequently, a follow-on series of tests was performed to investigate the response of axially-loaded CLT construction. Panels damaged during the preceding test were removed and replaced. Axial load was applied using precast concrete blocks to simulate the loaded condition of a five-story building at the first-floor front panel of the structures. These test structures were exposed to two shots: the first was designed to keep the structures within their respective elastic ranges while the second was designed to push the structures beyond their elastic limits. Reflected pressure and peak deflections were recorded at the front panels of the test structures to document the two-way panel load distribution behavior under a dynamic load event and the clearing of the shock wave. Prior to conducting the blast tests, a small number of tests were performed on a load tree test apparatus to aid in test planning by investigating the post-peak response of individual CLT panels of various lengths to quasi-static out-of-plane and axial loads applied simultaneously. This paper provides an overview of the results obtained from both the quasi-static and blast tests of axially-loaded CLT. Additionally, the paper compares CLT structure, component, and connection response across the suite of data. Conclusions are offered to assist engineers in the design of load bearing CLT construction exposed to airblast loads.
Blast Testing of Loaded Cross-Laminated Timber Structures
Weaver, Mark K. (author) / Newberry, Charles M. (author) / Podesto, Lisa (author) / O’Laughlin, Casey (author)
Structures Congress 2018 ; 2018 ; Fort Worth, Texas
Structures Congress 2018 ; 400-411
2018-04-17
Conference paper
Electronic Resource
English
Blast Testing of Loaded Cross-Laminated Timber Structures
British Library Conference Proceedings | 2018
|Cross Laminated Timber (CLT) Beams Loaded in Plane: Testing Stiffness and Shear Strength
DOAJ | 2019
|British Library Conference Proceedings | 2013
Design Provisions for Cross-Laminated Timber Structures
British Library Conference Proceedings | 2019
|