A platform for research: civil engineering, architecture and urbanism
Experimental Study on Bond Behavior between CFRP–Steel Composite Bars and Coral Sea-Sand Aggregate Seawater Concrete
Carbon fiber–reinforced polymer–steel composite bars (C-FSCBs) and coral sea-sand aggregate seawater concrete (CSSC) are attractive choices as construction materials for island and atoll engineering construction. Understanding the bond behavior between the C-FSCB and CSSC is crucial for evaluating the mechanical properties of C-FSCB-reinforced CSSC structures. In this study, the bond–slip behavior between the C-FSCB and CSSC was experimentally assessed via pullout tests. The influence of various factors on the bond behavior was discussed, and the bond mechanism between the C-FSCB and CSSC was analyzed. The results indicate that, unlike steel bars, the low rigidity of fiber-reinforced polymer caused surface fiber stripping (i.e., shear damage) of the C-FSCB after interface slip, consequently reducing the squeezing fragmentation of concrete between the ribs. As the diameter and bond length of the C-FSCB increased, the bond strength decreased. Compared to specimens with C-FSCBs, the bond strength of specimens with steel bars of the same diameter increased by 17.9%. The degree of coarse aggregate fracture at the CSSC interface in the splitting failure was much higher than that of normal concrete. Based on existing research data, a formula for calculating the bond strength of C-FSCBs in CSSC has been established to determine the anchorage length of C-FSCBs, and the calculated values accurately predicted the test values.
Experimental Study on Bond Behavior between CFRP–Steel Composite Bars and Coral Sea-Sand Aggregate Seawater Concrete
Carbon fiber–reinforced polymer–steel composite bars (C-FSCBs) and coral sea-sand aggregate seawater concrete (CSSC) are attractive choices as construction materials for island and atoll engineering construction. Understanding the bond behavior between the C-FSCB and CSSC is crucial for evaluating the mechanical properties of C-FSCB-reinforced CSSC structures. In this study, the bond–slip behavior between the C-FSCB and CSSC was experimentally assessed via pullout tests. The influence of various factors on the bond behavior was discussed, and the bond mechanism between the C-FSCB and CSSC was analyzed. The results indicate that, unlike steel bars, the low rigidity of fiber-reinforced polymer caused surface fiber stripping (i.e., shear damage) of the C-FSCB after interface slip, consequently reducing the squeezing fragmentation of concrete between the ribs. As the diameter and bond length of the C-FSCB increased, the bond strength decreased. Compared to specimens with C-FSCBs, the bond strength of specimens with steel bars of the same diameter increased by 17.9%. The degree of coarse aggregate fracture at the CSSC interface in the splitting failure was much higher than that of normal concrete. Based on existing research data, a formula for calculating the bond strength of C-FSCBs in CSSC has been established to determine the anchorage length of C-FSCBs, and the calculated values accurately predicted the test values.
Experimental Study on Bond Behavior between CFRP–Steel Composite Bars and Coral Sea-Sand Aggregate Seawater Concrete
J. Compos. Constr.
Zhou, Ji (author) / Chen, Zongping (author) / Huang, Yuming (author)
2024-12-01
Article (Journal)
Electronic Resource
English
Study on bond performance between FRP bars and seawater coral aggregate concrete
British Library Online Contents | 2018
|Study on bond performance between FRP bars and seawater coral aggregate concrete
British Library Online Contents | 2018
|Study on bond performance between FRP bars and seawater coral aggregate concrete
British Library Online Contents | 2018
|