A platform for research: civil engineering, architecture and urbanism
Stress–Dilatancy Response of Unsaturated Soils under Elevated Temperatures
Previous studies provide ample experimental evidence highlighting the effect of temperature on the volume change response of unsaturated soils. However, analytical efforts to capture the temperature dependency of dilatancy under shear stresses are notably scarce. This paper aims to fill this gap by presenting a thermodynamics-based dilatancy model incorporating the influence of the degree of saturation, temperature, soil type, and suction. The model is derived from the first law of thermodynamics, formulated in terms of stored and dissipative energies. Various sources of energy dissipation, including entropy, water flow, friction, as well as energies associated with volume change and rearrangement of soil grains, are considered. The temperature-dependent model is calibrated, and its accuracy is validated using data from 27 triaxial experiments available in the literature. This data set encompasses tests conducted under different temperatures, suctions, stress states, and initial void ratios. The accuracy of the proposed model is compared to three classic models present in the literature that do not account for suction and temperature. The findings demonstrate that the model adeptly captures the complex stress–dilatancy behavior of unsaturated soils with considerably higher accuracy than alternative models. Further, the proposed model’s application to simulate the volume change response is demonstrated for two soils under varying saturation levels. The model can readily be incorporated into constitutive modeling of unsaturated soils under thermo-hydro-mechanical conditions.
Stress–Dilatancy Response of Unsaturated Soils under Elevated Temperatures
Previous studies provide ample experimental evidence highlighting the effect of temperature on the volume change response of unsaturated soils. However, analytical efforts to capture the temperature dependency of dilatancy under shear stresses are notably scarce. This paper aims to fill this gap by presenting a thermodynamics-based dilatancy model incorporating the influence of the degree of saturation, temperature, soil type, and suction. The model is derived from the first law of thermodynamics, formulated in terms of stored and dissipative energies. Various sources of energy dissipation, including entropy, water flow, friction, as well as energies associated with volume change and rearrangement of soil grains, are considered. The temperature-dependent model is calibrated, and its accuracy is validated using data from 27 triaxial experiments available in the literature. This data set encompasses tests conducted under different temperatures, suctions, stress states, and initial void ratios. The accuracy of the proposed model is compared to three classic models present in the literature that do not account for suction and temperature. The findings demonstrate that the model adeptly captures the complex stress–dilatancy behavior of unsaturated soils with considerably higher accuracy than alternative models. Further, the proposed model’s application to simulate the volume change response is demonstrated for two soils under varying saturation levels. The model can readily be incorporated into constitutive modeling of unsaturated soils under thermo-hydro-mechanical conditions.
Stress–Dilatancy Response of Unsaturated Soils under Elevated Temperatures
Int. J. Geomech.
Ajdari, Mohsen (author) / Vahedifard, Farshid (author)
2025-05-01
Article (Journal)
Electronic Resource
English
Stress-Dilatancy of Unsaturated Soil
TIBKAT | 2020
|Stress-Dilatancy of Unsaturated Soil
ASCE | 2020
|Stress-Dilatancy of Unsaturated Soil
British Library Conference Proceedings | 2020
|