A platform for research: civil engineering, architecture and urbanism
Impact of Nanotechnology on Future Civil Engineering Practice and Its Reflection in Current Civil Engineering Education
Current civil engineering education should address the need to provide a broad vision, develop the higher-order skills of future civil engineers, enable them to adopt emerging technologies, and formulate innovative solutions to complex problems. This paper introduces relevant nanotechnology developments to convey the new vision and inspire creativity in civil engineering. It also presents a pedagogical framework for integrating nanotechnology education into a civil engineering curriculum and cultivating self-regulated learning and creativity skills for civil engineering students. The pedagogical framework includes the introduction of nanotechnology innovations and other relevant innovative technologies, and explicit instructions on cognitive strategies for facilitating and inspiring self-regulated learning and creativity. It is implemented with problem/project-based learning for a cocurricular project that requires self-regulated learning and creativity. This pedagogical framework provides a model for integrating emerging technology education and higher-order skill development into existing engineering curriculum. The outcomes from the implementation of the pedagogical framework are presented, and their further improvements are discussed.
Impact of Nanotechnology on Future Civil Engineering Practice and Its Reflection in Current Civil Engineering Education
Current civil engineering education should address the need to provide a broad vision, develop the higher-order skills of future civil engineers, enable them to adopt emerging technologies, and formulate innovative solutions to complex problems. This paper introduces relevant nanotechnology developments to convey the new vision and inspire creativity in civil engineering. It also presents a pedagogical framework for integrating nanotechnology education into a civil engineering curriculum and cultivating self-regulated learning and creativity skills for civil engineering students. The pedagogical framework includes the introduction of nanotechnology innovations and other relevant innovative technologies, and explicit instructions on cognitive strategies for facilitating and inspiring self-regulated learning and creativity. It is implemented with problem/project-based learning for a cocurricular project that requires self-regulated learning and creativity. This pedagogical framework provides a model for integrating emerging technology education and higher-order skill development into existing engineering curriculum. The outcomes from the implementation of the pedagogical framework are presented, and their further improvements are discussed.
Impact of Nanotechnology on Future Civil Engineering Practice and Its Reflection in Current Civil Engineering Education
2010-04-06
122011-01-01 pages
Article (Journal)
Electronic Resource
English
Nanotechnology in Civil Engineering
SAGE Publications | 2005
|Nanotechnology in civil engineering
Royal Society of Chemistry | 2004
|Nanotechnology in Civil Engineering
Online Contents | 2005
|Nanotechnology in Civil Engineering
Springer Verlag | 2018
|