A platform for research: civil engineering, architecture and urbanism
Relationship between Nano and Macroscale Properties of Postfire ASTM A36 Steels
In this study, we investigated the composition and mechanical properties of metallurgical phases present in the ASTM A36 steels subjected to postfire temperatures using nanoindentation testing in conjunction with the K++ clustering method. The specimens are exposed to target temperatures from 500°C to 1,000°C, with increments of 100°C. We extracted two nanomechanical properties, namely, hardness and Young’s modulus, from the nanoindentation tests and used them as descriptive features for the clustering analysis. Results obtained from this analysis show that average volume fractions of ferrite and pearlite were 84% and 16%, respectively. The results also revealed that the mean hardness values were in the range of 2.46 to 3.01 GPa for ferrite and 3.11 to 4.27 GPa for pearlite for the different temperature exposures. The Young’s moduli of ferrite ranged from 171.7 to 203.3 GPa, whereas the pearlite phase ranged from 181.1 to 206.8 GPa for the different temperature exposures. The obtained results also indicated the existence of a quadratic relation between the pearlite’s mean nanoindentation hardness and the yield and tensile strengths of different postfire ASTM A36 steels.
Relationship between Nano and Macroscale Properties of Postfire ASTM A36 Steels
In this study, we investigated the composition and mechanical properties of metallurgical phases present in the ASTM A36 steels subjected to postfire temperatures using nanoindentation testing in conjunction with the K++ clustering method. The specimens are exposed to target temperatures from 500°C to 1,000°C, with increments of 100°C. We extracted two nanomechanical properties, namely, hardness and Young’s modulus, from the nanoindentation tests and used them as descriptive features for the clustering analysis. Results obtained from this analysis show that average volume fractions of ferrite and pearlite were 84% and 16%, respectively. The results also revealed that the mean hardness values were in the range of 2.46 to 3.01 GPa for ferrite and 3.11 to 4.27 GPa for pearlite for the different temperature exposures. The Young’s moduli of ferrite ranged from 171.7 to 203.3 GPa, whereas the pearlite phase ranged from 181.1 to 206.8 GPa for the different temperature exposures. The obtained results also indicated the existence of a quadratic relation between the pearlite’s mean nanoindentation hardness and the yield and tensile strengths of different postfire ASTM A36 steels.
Relationship between Nano and Macroscale Properties of Postfire ASTM A36 Steels
J. Mater. Civ. Eng.
Arumugam, Dharanidharan (author) / Naik, Dayakar L. (author) / Sajid, Hizb Ullah (author) / Kiran, Ravi (author)
2022-06-01
Article (Journal)
Electronic Resource
English
The Effective Postfire Critique
British Library Online Contents | 1996
|ASTM Update for Stainless Steels
British Library Online Contents | 1999
|Postfire mechanical properties of Galfan‐coated steel cables
Wiley | 2020
|