A platform for research: civil engineering, architecture and urbanism
Analytical Solutions for General Three-Wedge Stability
A force-based limit-equilibrium analysis is presented for the stability of a general two-dimensional, three-wedge sliding mass of soil with vertical or nonvertical interfaces between the wedges. The analysis is conducted using five failure planes and can accommodate variable conditions for wedge geometry, pore pressure, shear strength parameters, reinforcement, applied loads, and pseudostatic seismic coefficients. A constant factor of safety is assumed for each failure plane and reinforcement element, although this assumption can be relaxed through the selection of strength parameters. The factor of safety is obtained analytically and requires solving for the roots of a polynomial equation. A numerical example is provided to demonstrate the method and illustrate the importance of selected parameters, including wedge interface angles, for the stability of an earth slope. The analytical solutions take compact form, provide insight for the three-wedge method, and offer good capability to tailor conditions for applications that can be suitably characterized by wedge failure.
Analytical Solutions for General Three-Wedge Stability
A force-based limit-equilibrium analysis is presented for the stability of a general two-dimensional, three-wedge sliding mass of soil with vertical or nonvertical interfaces between the wedges. The analysis is conducted using five failure planes and can accommodate variable conditions for wedge geometry, pore pressure, shear strength parameters, reinforcement, applied loads, and pseudostatic seismic coefficients. A constant factor of safety is assumed for each failure plane and reinforcement element, although this assumption can be relaxed through the selection of strength parameters. The factor of safety is obtained analytically and requires solving for the roots of a polynomial equation. A numerical example is provided to demonstrate the method and illustrate the importance of selected parameters, including wedge interface angles, for the stability of an earth slope. The analytical solutions take compact form, provide insight for the three-wedge method, and offer good capability to tailor conditions for applications that can be suitably characterized by wedge failure.
Analytical Solutions for General Three-Wedge Stability
Int. J. Geomech.
Fox, Patrick J. (author)
2022-12-01
Article (Journal)
Electronic Resource
English
Analytical Solutions for General Two-Wedge Stability
ASCE | 2021
|Roof Wedge Stability: a Simple Analytical Model and Numerical Validation
British Library Conference Proceedings | 2002
|Wedge-shaped slices for bearing capacity and general slope stability
British Library Conference Proceedings | 2008
|